All posts by seanwilso

Muscle strength gains during resistance exercise training are attenuated with soy compared with dairy or usual protein intake in older adults – part 1

Share this:

On a global scale, the number of people over 60 yr is expected to more than double from 841 million in 2012 to more than 2 billion by 2050. This change in demographics will have profound implications for many aspects of life (Thomson et al. 2016). Furthermore, Government bodies worldwide will be faced with considerable challenges related to ageing policy and how best to deal with this new reality.

ageing, loss of muscle mass, strength, sarcopenia
Courtesy @LeighBreen PhD (Twitter): Sarcopenia presentation

Of the many things that occur during the ageing process one of the most obvious signs is the loss of skeletal muscle mass and strength, with decrements in physical function and potential predisposition to disability. In academic speak, this is known as sarcopenia. The research and interest in this area has been gradually increasing as evidenced by the below graph that shows – since the term sacropenia was first coined in 1989 – a massive increase has occurred. To enhance functional physical capacity and reduce disability into older age, it is therefore critical to develop strategies that facilitate the attenuation of skeletal muscle mass and strength. With more than 30 years of scientific evidence to show that exercise – and, more specifically, resistance training – as both very effective and safe methods to maintain skeletal lean muscle tissue mass and strength (see here and here), current recommendations strongly advocate this form of exercise for older adults.

Interestingly, gains in skeletal lean muscle tissue and muscular strength may be potentiated through the application of appropriate nutritional strategies and in particular increased protein intake. A recent meta-analysis by Cermak and colleagues (2012) reported ~35% greater enhancement in muscle mass and strength can be achieved in older adults undertaking resistance training who consumed at least 1.2 g/kg of body weight/d of protein through supplementation or diet compared with other control groups that were either non-protein, lower protein diet or exercise training with no nutrition co-intervention. Thus, protein quality or source may further augment the effect of the resistance training stimulus by eliciting a greater stimulatory effect on muscle protein synthesis. Dairy protein compared to soy protein has been shown to be more effacacious post-exercise in stimulating increases in lean mass in young healthy males. In older adults though this response to resistance training and increased protein intake may be blunted which necessitates that higher doses of protein are required to bring about an increase.

The aim of the study under review for this article was to determine whether increased dairy or soy protein intake combined with resistance training improved strength gains in older adults.

Soy protein, strength, muscle mass, testosterone
Does Soy Protein Suppress Strength Gains?

Researchers recruited one hundred and ninety two older adults (age, 50-79 yr; BMI, 20-35 kg/m²) by public advertisement. Participation was allowed if they were physically active but not engaged in formal exercise. Those that meet the inclusion criteria undertook a resistance training program for 12 weeks. Randomisation to one of three experimental diets was performed:

  1. High dairy protein diet (HP-D)
  2. High non-dairy (soy) protein diet (HPeS)
  3. Usual protein diet (UP).

DIET: Each diet was isocaloric and low-fat (30% fat, <8% saturated fat) and aimed to maintain energy balance. The diets provided ~1 g/kg of body weight/d of dietary protein, mainly from lean meat sources. HP-D including additional dairy protein of ~27 g per day in the form of a shake (475 g Devondale Smart reduced fat milk, 200 g Nestle Soleil diet no fat yoghurt & 20 ml Bickfords vanilla milk mix syrup). The HP-S providing in the form of a shake – 300 g So Good reduced fat soy milk, 100 g Kingland soy yoghurt, 20 g Nature’s Way instant natural protein powder & 15 g poly-joule – which added an extra ~27 g of soy protein. Protein intake was distribtuted evenly across the day with the three main meals providing >20 g per feed; this is consistent with best practice for optimising muscle protein synthesis in older adults. Following resistance training sessions participants consumed the appropriate additional foods immediately after training and that represented the main meal of that day. Participants were supplied with key foods specific to their allocated diet for the duration of the study to facilitate adherence. Energy and macronutrient intakes from daily food checklists were analysed to monitor food intake and dietary compliance.

Strength training and ageing
Resistance training: a key component of healthy ageing?

RESISTANCE TRAINING: All subjects participated in a whole body resistance training program three days per week on non-consecutive days for 12 weeks and the principles of progressive overload were applied.  Five exercises on weight stack pin loaded machines were performed: leg press, chest press, knee extension, lat pull down and leg curl, and seated bent knee hip flexions. Trainees started with one set x 8 repetition maximum (RM; maximum weight lifted for eight repetitions), this was maintained until individuals could perform three sets of 12 repetitions and then the load was increased. This cycle was repeated again for the duration of the trial. Assessment of muscle strength, body composition, physical function and quality of life was conducted at baseline and 12 weeks. All exercise training was completed in the research gymnasium at the University of South Australia under the supervision of gymnasium staff.

Assessment of muscle strength using handgrip, isokinetic dynamometry and 8RM was completed. The leg press, chest press, knee extension, lat pull down and leg curl were tested with 8RM and a summed total 8RM for all exercises was recorded  Dominant handgrip strength was measured using hydraulic handgrip dynamometer and isometric strength of the knee extensor muscles of the right leg was assessed using an isokinetic dynamometer.

resistance training slows down aging
You don’t have to lift weights to do resistance training

RESULTS: 83 participants completed the intervention being adherent to both diet and resistance training protocols. HP-D and HP-S had higher protein intakes compared with UP (HP-D 1.41 ± 0.14 g/kg/d, HP-S 1.42 ± 0.61 g/kg/d, UP 1.10 ± 0.10 g/kg/d; P < 0.001 treatment effect). Baseline characteristics, compliance with the intakes of the additional protein foods and adherence to the resistance training program in those that meet all relevant study protocols was not different between groups.

Increase in muscular strength as ascertained by total 8RM was significantly less in HP-S compared with HP-D and UP (HP-D 92.1 ± 40.8%, HP-S 63.0 ± 23.8%,UP 92.3 ± 35.4%; P=0.002 treatment effect). 8RM percent improvement in leg press was much greater in HP-D and UP compared with HP-S (HP-D, 136.8 ± 88.2%; HP-S, 64.8 ± 35.2%; UP, 135.0 ± 62.0%; P < 0.001). For most other exercises, 8RM was not signficantly different for each diet group. Total training volume over the 12 weeks was not different between groups.

Weight, waist circumference and total body fat decreased and lean mass and the distance covered during the 6 min walk test increased significantly increased with no difference between diets. As expected absolute protein intake (g) and relative protein intake (per kg body weight) were different with HP-D and HP-S greater than UP. Dairy protein in HP-D was significantly greater compared with both HP-S and UP with the amount of non-dairy protein in HP-S significantly greater compared with both HP-D and UP.

DISCUSSION: This study has demonstrated that 12 weeks of progressive resistance training exercise in healthy older adults did not provide any additional benefit for improvements in strength, body composition, physical function, or quality of life when additional protein from either dairy or soy is compared to usual (lower) protein intake. Perhaps of more significant interest is that results suggested that increased soy protein intake attenuated improvements in muscular strength. I am going to publish this article before it is entirely finished as I believe this is important research for those interested in this area and facilitating discussion on this topic should start now.

image
Stay strong and prosper

Over the next week or so I will be posting a part 2 in relation to this study as there is a lot more to explore. For example, why did the authors fail to acknowledge or discuss the fact that the attentuated strength improvement in the HP-S was confined exclusively to the leg press exercise? For all other exercises, no difference for dietary influence on strength improvement was found. Whilst not a criticism, it seems rather odd that whey protein was not included as one of the intervention dietary arms of the study. The evidence for whey protein augmenting the development of strength and facilitating the accretion of lean muscle mass from resistance training is well documented. Comparing this with the other diets would have provided some interesting insights into whether there are any further benefits of whey protein to older adults. Finally, one thing that does disappoint me about many of the studies that investigate the efficacy and safety of resistance training in older adults is the reliance on exercises that are machine-based.

CONCLUSION: Increased soy protein intake attenuated gains in muscle strength during resistance training in older adults compared with increased intake of dairy protein or usual protein intake.

Look out for part 2 (see here) titled “Does Soy Protein Really Inhibit Resistance Training Induced Strength Gains In Older Adults?” where I will discuss some of the things I mentioned above in more depth and some possible mechanisms of action as to why soy protein may or may not suppress strength gains from resistance training.

Post-script: Following further analysis and publication of part 2 of this blog, I wrote a letter to the Editor of Clinical Nutrition Journal outlining some of the, what I believed, flaws regarding the interpretation of the results of this trial. Upon peer review this was accepted for publication and can be found here. If you are unable to access this correspondence and the authors reply to my letter, please contact me and I should be able to assist. 

References

Cermak et al. (2012) Protein supplementaiton augments the adaptrive response of skeletal muscle to resistance-type exercise training: a meta-analysis Am J Clin Nutr 96: 1454- 64.

Thomson et al. (2016) Muscle strength gains during resistance exercise training are attenuated with soy compared with dairy or usual protein intake in older adults: A randomized controlled trial. Clinical Nutrition. 35: 27-33

Wilson, SA (2016) Comment on: Muscle strength gains during resistance exercise training are attenuated with soy compared with dairy or usual protein intake in older adults: A randomized controlled trial. Clinical Nutrition. 35(6):1575-1576


Disclaimer: All contents of the FitGreyStrong website/blog are provided for information and education purposes only. Those interested in making changes to their exercise, lifestyle, dietary, supplement or medication regimens should consult a relevantly qualified and competent health care professional. Those who decide to apply or implement any of the information, advice, and/or recommendations on this website do so knowingly and at their own risk. The owner and any contributors to this site accept no responsibility or liability whatsoever for any harm caused, real or imagined, from the use or distribution of information found at FitGreyStrong. Please leave this site immediately if you, the reader, find any of these conditions not acceptable.

© FitGreyStrong


Share this:

Is high-intensity resistance training bad for your heart?

Share this:

“Intense resistance training without adequate aerobic endurance exercise may not be good for your cardiovascular health” FitGreyStrong 2019

The aorta (the largest artery in the body and that which sits at the top of the left ventricle, the heart’s muscular pumping chamber) can be assessed for arterial stiffness (the stiffer it is, the worst the prognosis) via a non-invasive test called Aortic Pulse Wave Velocity (usually measured in meters per second). Basically, the quicker the speed, the higher the stiffness, and stiff arteries are not healthy ones so it is important to establish what and if certain types of exercise improve aortic pliability and thus reduce chances of cardiovascular disease.

In 2009 Japanese researchers showed that increased aortic pulse wave velocity was able to predict cardiovascular mortality in middle-aged and elderly Japanese men (see here). What this suggests is that pulse wave velocity is a powerful measure of cardiovascular health.

Scientists investigating the effects of aortic pulse wave velocity in endurance trained athletes, intense resistance trained athletes and sedentary individuals discovered that much lower values were recorded for those doing endurance exercise versus both resistance trained and sedentary. In fact, the pulse wave velocity of the resistance trained athletes was similar to those sedentary. As such, intensive resistance training only may not be particularly effective for optimising cardiovascular health (see here).

It could be argued that the athletes involved in this study were weightlifters and the training involved in such a sport is very specific and possibly somewhat different to the sort of resistance training performed by many recreational lifters/trainees (i.e. higher reps, shorter rest periods that would provide greater cardiovascular stimulation and hence more likely improve arterial stiffness).

 However, the takehome message from FGS is that if you are looking to improve fitness, health and wellness, make doubly sure you include a decent amount of aerobic exercise or training into your week alongside your must-do resistance/strength.


For local Townsville residents interested in FitGreyStrong’s specialised Exercise Physiology services or exercise programs for older adults or for Master’s competitors wanting to enhance athletic performance, contact FitGreyStrong@outlook.com or phone 0499 846 955 for a confidential discussion.

For other Australian residents or oversees readers interested in our services, please see here.


Disclaimer: All contents of the FitGreyStrong website/blog are provided for information and education purposes only. Those interested in making changes to their exercise, lifestyle, dietary, supplement or medication regimens should consult a relevantly qualified and competent health care professional. Those who decide to apply or implement any of the information, advice, and/or recommendations on this website do so knowingly and at their own risk. The owner and any contributors to this site accept no responsibility or liability whatsoever for any harm caused, real or imagined, from the use or distribution of information found at FitGreyStrong. Please leave this site immediately if you, the reader, find any of these conditions not acceptable.


© FitGreyStrong

Share this:

The Australian Physical Activity Guidelines for “getting stronger”: Evidence-Based or Wishful Thinking?

Share this:
The development and publication of the “Australian Evidence-Based Physical Activity Recommendations for Adults (18-64 years)” by the Australian Government, The Department of Health (August 2012) promote the participation in “muscle strengthening activities” to:
• Manage blood pressure, blood sugar and blood cholesterol levels.
• Prevent and control heart disease and type 2 diabetes.
• Improve posture, mobility and balance.
• Reduce the risk of falls and injury.

• Maintain your ability to do everyday tasks.


Evidence? Who needs evidence………

However, let me inform you that there are components of these guidelines that have virtually no supporting scientific evidence. The advice that “I could do tasks around the house that involve lifting, carrying or digging” whilst facilitating energy expenditure and contributing to an active lifestyle are not well defined and are somewhat nebulous. For example, lifting a chair up, carrying a full bag of rubbish to the outside bin or doing some gardening will do very little to nothing to improve your muscle strength or power. Many of these are normal everyday activities that pose no significant challenge to our musculoskeletal system and hence will be unlikely to bring about full realisation of the benefits mentioned above. Perhaps you could contend that heavy digging that produces fatigue and requires constant breaks could be classified as “strength-like” training, but how many people (unless doing as a job) are out in the backyard doing regular heavy digging every week.

Is this enough?
If you really want to improve your muscle strength and power, which has been shown to have so many benefits for older adults, and that I have outlined elsewhere (see here), you need to perform challenging resistive-type physical activities or exercise that involve “high effort”. You can utilise a number of different things to do this (e.g. traditional apparatus like barbells/dumbbells, kettlebells, machine weights or plain old bodyweight-based exercises or resistance bands or anything around the house that is challenging to to lift and move around…in fact pretty much anything if you know how) – but most importantly when you use any of these things the muscle work needs to be hard to very hard for you and/or high to very high in effort. If you meet such requisites you can be confident that what you are doing is resistance or strength training and will consequently help achieve the benefits mentioned previously.

Disclaimer: All contents of the FitGreyStrong website/blog are provided for information and education purposes only. Those interested in making changes to their exercise, lifestyle, dietary, supplement or medication regimens should consult a relevantly qualified and competent health care professional. Those who decide to apply or implement any of the information, advice, and/or recommendations on this website do so knowingly and at their own risk. The owner and any contributors to this site accept no responsibility or liability whatsoever for any harm caused, real or imagined, from the use or distribution of information found at FitGreyStrong. Please leave this site immediately if you, the reader, find any of these conditions not acceptable.

© FitGreyStrong
Share this:

Higher Dietary Protein is More Effective During Energy Deficit And Intense Exercise

Share this:

Published in the American Journal of Clinical Nutrition, researchers Dr Thomas Longland and co. showed that during marked energy deficit a diet higher in protein was more effective in promoting increases in lean body mass (muscle) and losses of fat mass when combined with a high volume of resistance training (weights) and anaerobic exercise (sprints).


Protein requirements are increased during intense exercise training

When attempting to decrease body fat through intense exercise and an energy deficit diet, ensure you consume high protein foods (i.e eggs, fish, meat, WPC etc) regularly across the day to maintain a steady supply of amino acids to help facilitate muscle recovery and adaptation. This study provides further confirmation of the importance of adequate protein to support muscle protein synthesis.

This is particularly important in older adults with the latest review of the evidence (discussed here) showing that maximising skeletal muscle protein synthesis rates during recovery from resistance training exercise in younger adults being different to older adults. The ingestion of ∼20 g of protein or ∼0.25 g protein/kilogram bodyweight appears to be sufficient. Older adults, on the other hand, demonstrate a blunted post-prandial muscle protein synthetic response. Older adults as opposed to younger adults therefore require higher amounts of protein during recovery from resistance training exercise to optimally stimulate muscle protein synthesis. Intakes even up to ∼40 g appear necessary. Currently, no consensus exists regarding the amount of protein required to maximally stimulate skeletal muscle protein synthesis rates during recovery from resistance training exercise in older adults.

Further comments:

Interestingly, one of the key takeouts of this study is that an energy deficit diet was utilised to elicit fat mass loss. It is very important to acknowledge that the research conducted over the last 8 decades has conclusively demonstrated that weight or fat loss will only occur if this fundamental physiological requirement is met. For an extensive discussion of this research and what the metabolic-unit based weight loss studies reveal see here.

To lose weight you need to expend more than you eat
No caloric deficit = no fat loss

Therefore, don’t believe the hype. Food quality is a an absolute must and essential to good health. However, weight or fat loss will not be realised no matter how good your diet is unless an energy deficit exists. Increased total physical activity during all waking hours and an energy-deficit diet that is wholesome, natural, minimally-processed and nutrient-dense will provide a significant opportunity for weight loss to be achieved.

Lastly, there are a number of studies and anecdotal evidence that show a significant proportion of exercisers eating an ad libitum diet  – possibly as high as 50% – do not achieve the weight loss expected with as much as 15% actually gaining weight. These individuals are often referred to as ‘nonresponders‘. Those on the other hand that do achieve weight loss from exercise are referred to as ‘responders‘. The question is, how is this possible and are there any practical solutions? Please see here for more on the compensatory mechanisms that some suffer from that can thwart the success of an exercise program and some of things that can be done to combat this resistance to fat loss.

Reference: Longland, T.M. et al (2016) Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: a randomized trial. The American Journal of Clinical Nutrition (link to reference see here)


For local Townsville residents interested in FitGreyStrong’s Exercise Physiology services or exercise programs designed to improve muscular strength, physical function (how you move around during the day), bring about successful weight loss and change quality of life or programs to enhance athletic performance, contact FitGreyStrong@outlook.com or phone 0499 846 955 for a confidential discussion.

For other Australian residents or oversees readers interested in our services, please see here.


Disclaimer: All contents of the FitGreyStrong website/blog are provided for information and education purposes only. Those interested in making changes to their exercise, lifestyle, dietary, supplement or medication regimens should consult a relevantly qualified and competent health care professional. Those who decide to apply or implement any of the information, advice, and/or recommendations on this website do so knowingly and at their own risk. The owner and any contributors to this site accept no responsibility or liability whatsoever for any harm caused, real or imagined, from the use or distribution of information found at FitGreyStrong. Please leave this site immediately if you, the reader, find any of these conditions not acceptable.
© FitGreyStrong

Share this: