Category Archives: Tidbits

Can Vitamin D supplementation augment strength gains in older adults doing resistance training?

Share this:

In a recent meta-analysis (see here), vitamin D was found to provide an additive benefit for older adults partaking in resistance training (RT). In other words, when compared to older adults taking a placebo, significantly greater gains in muscle strength were achieved in those supplemented with vitamin D. However, upon closer analysis several issues become obvious that are difficult to reconcile. The following discusses some of these issues inherent in the findings of this paper (see below).

The group 1 analysis of 3 trials finds vit D supplementation augments muscle strength of the lower limbs, SMD=0.98; see fig 2 below. (Please click on any image to open and make larger for viewing).

…but what is with the scale used for the x-axis; it seems all wrong…..all the green squares sit nicely on zero……. and where is my forest plot with 95% CI bars and my black triangle to show overall SMD?

As a crude comparison & to put this in context, Chilibeck et al (2017) found SMD=0.25 for the effect of creatine supplementation on lower body strength during RT in older adults. Perhaps the most effective supplement available? Could vit D really be that much better? 

The authors acknowledge serious inconsistency with substantial heterogeneity (see table 5) for this outcome measure and even suggest that maybe: “….these studies were unsuitable for comparison”, but conclude nonetheless that there is: “tentative support for the additive effects of RT and vit D supplementation for the improvement of muscle strength in older adults”, including those replete in Vit D.

The Uusi-Rasi et al (2015) trial was weighted heavily (75%) and rightly so being the most well designed, largest & longest RCT to date. In fact SMD of this trial in the group 1 analysis = 1.16. This is very impressive and clinically relevant if accurate and valid. Uusi-Rasi et al (2015) in contrast states: “Irrespective of vit D, exercise increased muscle strength. The predicted mean increase in lower limb extension strength was almost 15% in both exercised groups and differed significantly from the placebo without exercise group.”

“Another unexpected finding was that exercisers treated with vit D supplementation showed consistently smaller benefits than exercisers receiving placebo……our results indicate that vit D may not improve neuromuscular function, at least when vit D intake is sufficient.” The largest and longest RCT to date found no additional – and perhaps even attenuated – benefit of vit D supplementation in replete resistance-training older adults, which is at complete odds to the meta-analysis.

The Agergaard et al (2015) trial showed no additional benefit of vit D on muscle strength in older adults (vit D replete). Sample size for older adults was very small also and weighted acccordingly in the meta.

….and Bunout et al (2006) found that combined calcium/vit D supplementation was no more effective than calcium-only supplementation in older adults undergoing RT but – and this is a critical point of difference to the other 2 studies.

– all participants were arguably vit D insufficient; to be included participants had to be 16 ng/ml (40 nmol/L) or less for serum 25(OH)D. An important point that was missed by the authors of the meta-analysis (see further below).

These 3 studies included in the group 1 analysis of muscle strength of the lower limbs were identified as “all participants took part in RT and the intervention arm was supplemented with vit D (describing the additive effect of vit D supplementation when combined with RT)”

However, Bunout et al (2006) did not include a RT group that received a ‘true’ placebo. Both exercising groups in this trial received supplementation of some sort.

….one group was supplemented with vit D & calcium (intervention), the other exercising group were supplemented with calcium-only (control). “……vit D was given along with calcium in this trial, since a low calcium intake can limit the effects of the vitamin.

To isolate the effect of the vitamin, controls for supplementation received calcium also.” However results showed there were no statistically significant differences between these groups in baseline to final percentage change for right and left quadriceps strength, and right and left hand grip strength. In fact, the RT plus calcium-only group achieved better mean numerical responses in strength (non-significant) when compared to the RT plus vit D/calcium group (see table 2)……..so is it somewhat unusual that such a large SMD was found in the meta favouring the group that received vit D?

The authors state in the meta discussion that: “Interestingly, although the studies included within group 1 did not specify serum 25(OH)D levels as inclusion/exclusion critieria, baseline and postintervention serum 25(OH)D were within the ‘sufficient’ range (>30 nmol/L).”

Now there are 2 issues with this statement. Firstly, it is false that all studies included in group 1 did not specify serum 25(OH)D levels as inclusion/exclusion criteria. Bunout et al (2006) in fact did just that and specified a cut-off point for inclusion.

Subjects were screened and included only if their serum 25(OH)D levels were 16 ng/ml (40 nmol/L) or less. Secondly, mean baseline serum 25(OH)D of the vit D supplemented group in Bunout et al (2006) was 12.4 ng/ml (30 nmol/L) and many experts would propose that serum 25(OH)D of around 30 nmol/L in older adults is insufficient. It is also worth noting that Vit D status for participants of each of the 3 studies varied considerable and could possibly confound the meta.

After reviewing the 3 trials very carefully (used in the group 1 analysis of Antonia and Greig 2017), the finding that vit D supplementation significantly augments muscular strength of older adults doing RT, including those replete for vit D (SMD=0.98), is perplexing.

It is plausible and there is some evidence that vit D supplementation may augment strength of exercising older adults that have insuffient or deficient levels of vit D [serum 25(OH)D <50 nmol/L & <25 nmol/L] but such data is as yet not forthcoming in older adults performing RT

After reviewing Antoniak & Greig (2017) in which vit D supplementation significantly enhances strength in older adults doing RT, I cannot but view the findings as an artefact possibly generated by the unresolvable and substantial heterogeneity that was detected in the analysis.

The conclusion of tentative support for the ergogenity of vit D in older RT adults, irrespective of serum 25(OH)D status, is therefore premature and unsubstantiated.


For local Townsville residents interested in FitGreyStrong’s Exercise Physiology services or exercise programs designed to improve muscular strength, physical function (how you move around during the day) and quality of life or programs to enhance athletic performance, contact FitGreyStrong@outlook.com or phone 0499 846 955 for a confidential discussion.

For other Australian residents or oversees readers interested in our services, please see here.


Disclaimer: All contents of the FitGreyStrong website/blog are provided for information and education purposes only. Those interested in making changes to their exercise, lifestyle, dietary, supplement or medication regimens should consult a relevantly qualified and competent health care professional. Those who decide to apply or implement any of the information, advice, and/or recommendations on this website do so knowingly and at their own risk. The owner and any contributors to this site accept no responsibility or liability whatsoever for any harm caused, real or imagined, from the use or distribution of information found at FitGreyStrong. Please leave this site immediately if you, the reader, find any of these conditions not acceptable.
© FitGreyStrong

Share this:

Is high-intensity resistance training bad for your heart?

Share this:

“Intense resistance training without adequate aerobic endurance exercise may not be good for your cardiovascular health” FitGreyStrong 2019

The aorta (the largest artery in the body and that which sits at the top of the left ventricle, the heart’s muscular pumping chamber) can be assessed for arterial stiffness (the stiffer it is, the worst the prognosis) via a non-invasive test called Aortic Pulse Wave Velocity (usually measured in meters per second). Basically, the quicker the speed, the higher the stiffness, and stiff arteries are not healthy ones so it is important to establish what and if certain types of exercise improve aortic pliability and thus reduce chances of cardiovascular disease.

In 2009 Japanese researchers showed that increased aortic pulse wave velocity was able to predict cardiovascular mortality in middle-aged and elderly Japanese men (see here). What this suggests is that pulse wave velocity is a powerful measure of cardiovascular health.

Scientists investigating the effects of aortic pulse wave velocity in endurance trained athletes, intense resistance trained athletes and sedentary individuals discovered that much lower values were recorded for those doing endurance exercise versus both resistance trained and sedentary. In fact, the pulse wave velocity of the resistance trained athletes was similar to those sedentary. As such, intensive resistance training only may not be particularly effective for optimising cardiovascular health (see here).

It could be argued that the athletes involved in this study were weightlifters and the training involved in such a sport is very specific and possibly somewhat different to the sort of resistance training performed by many recreational lifters/trainees (i.e. higher reps, shorter rest periods that would provide greater cardiovascular stimulation and hence more likely improve arterial stiffness).

 However, the takehome message from FGS is that if you are looking to improve fitness, health and wellness, make doubly sure you include a decent amount of aerobic exercise or training into your week alongside your must-do resistance/strength.


For local Townsville residents interested in FitGreyStrong’s specialised Exercise Physiology services or exercise programs for older adults or for Master’s competitors wanting to enhance athletic performance, contact FitGreyStrong@outlook.com or phone 0499 846 955 for a confidential discussion.

For other Australian residents or oversees readers interested in our services, please see here.


Disclaimer: All contents of the FitGreyStrong website/blog are provided for information and education purposes only. Those interested in making changes to their exercise, lifestyle, dietary, supplement or medication regimens should consult a relevantly qualified and competent health care professional. Those who decide to apply or implement any of the information, advice, and/or recommendations on this website do so knowingly and at their own risk. The owner and any contributors to this site accept no responsibility or liability whatsoever for any harm caused, real or imagined, from the use or distribution of information found at FitGreyStrong. Please leave this site immediately if you, the reader, find any of these conditions not acceptable.


© FitGreyStrong

Share this:

Higher Dietary Protein is More Effective During Energy Deficit And Intense Exercise

Share this:

Published in the American Journal of Clinical Nutrition, researchers Dr Thomas Longland and co. showed that during marked energy deficit a diet higher in protein was more effective in promoting increases in lean body mass (muscle) and losses of fat mass when combined with a high volume of resistance training (weights) and anaerobic exercise (sprints).


Protein requirements are increased during intense exercise training

When attempting to decrease body fat through intense exercise and an energy deficit diet, ensure you consume high protein foods (i.e eggs, fish, meat, WPC etc) regularly across the day to maintain a steady supply of amino acids to help facilitate muscle recovery and adaptation. This study provides further confirmation of the importance of adequate protein to support muscle protein synthesis.

This is particularly important in older adults with the latest review of the evidence (discussed here) showing that maximising skeletal muscle protein synthesis rates during recovery from resistance training exercise in younger adults being different to older adults. The ingestion of ∼20 g of protein or ∼0.25 g protein/kilogram bodyweight appears to be sufficient. Older adults, on the other hand, demonstrate a blunted post-prandial muscle protein synthetic response. Older adults as opposed to younger adults therefore require higher amounts of protein during recovery from resistance training exercise to optimally stimulate muscle protein synthesis. Intakes even up to ∼40 g appear necessary. Currently, no consensus exists regarding the amount of protein required to maximally stimulate skeletal muscle protein synthesis rates during recovery from resistance training exercise in older adults.

Further comments:

Interestingly, one of the key takeouts of this study is that an energy deficit diet was utilised to elicit fat mass loss. It is very important to acknowledge that the research conducted over the last 8 decades has conclusively demonstrated that weight or fat loss will only occur if this fundamental physiological requirement is met. For an extensive discussion of this research and what the metabolic-unit based weight loss studies reveal see here.

To lose weight you need to expend more than you eat
No caloric deficit = no fat loss

Therefore, don’t believe the hype. Food quality is a an absolute must and essential to good health. However, weight or fat loss will not be realised no matter how good your diet is unless an energy deficit exists. Increased total physical activity during all waking hours and an energy-deficit diet that is wholesome, natural, minimally-processed and nutrient-dense will provide a significant opportunity for weight loss to be achieved.

Lastly, there are a number of studies and anecdotal evidence that show a significant proportion of exercisers eating an ad libitum diet  – possibly as high as 50% – do not achieve the weight loss expected with as much as 15% actually gaining weight. These individuals are often referred to as ‘nonresponders‘. Those on the other hand that do achieve weight loss from exercise are referred to as ‘responders‘. The question is, how is this possible and are there any practical solutions? Please see here for more on the compensatory mechanisms that some suffer from that can thwart the success of an exercise program and some of things that can be done to combat this resistance to fat loss.

Reference: Longland, T.M. et al (2016) Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: a randomized trial. The American Journal of Clinical Nutrition (link to reference see here)


For local Townsville residents interested in FitGreyStrong’s Exercise Physiology services or exercise programs designed to improve muscular strength, physical function (how you move around during the day), bring about successful weight loss and change quality of life or programs to enhance athletic performance, contact FitGreyStrong@outlook.com or phone 0499 846 955 for a confidential discussion.

For other Australian residents or oversees readers interested in our services, please see here.


Disclaimer: All contents of the FitGreyStrong website/blog are provided for information and education purposes only. Those interested in making changes to their exercise, lifestyle, dietary, supplement or medication regimens should consult a relevantly qualified and competent health care professional. Those who decide to apply or implement any of the information, advice, and/or recommendations on this website do so knowingly and at their own risk. The owner and any contributors to this site accept no responsibility or liability whatsoever for any harm caused, real or imagined, from the use or distribution of information found at FitGreyStrong. Please leave this site immediately if you, the reader, find any of these conditions not acceptable.
© FitGreyStrong

Share this:

Why the “strengthification” of Gen X’ers & Baby Boomers is the greatest health challenge of the 21st century

Share this:

Last October l presented at the Ancestral Health Society of New Zealand (AHSNZ) International symposium with the title of my talk: “Why the “strengthification” of Gen X’ers & Baby Boomers is the greatest health challenge of the 21st century”.

In this session I discussed a number of things in relation to ageing and the dynapenic/sarcopenic neuromuscular-related changes that occur. I explored how resistance training can potentially alter this trajectory, and reverse in some cases, this weakening process that occurs across the lifespan.

To view slides please click here.


Disclaimer: All contents of the FitGreyStrong website/blog are provided for information and education purposes only. Those interested in making changes to their exercise, lifestyle, dietary, supplement or medication regimens should consult a relevantly qualified and competent health care professional. Those who decide to apply or implement any of the information, advice, and/or recommendations on this website do so knowingly and at their own risk. The owner and any contributors to this site accept no responsibility or liability whatsoever for any harm caused, real or imagined, from the use or distribution of information found at FitGreyStrong. Please leave this site immediately if you, the reader, find any of these conditions not acceptable.

©FitGreyStrong


 

Share this: