Category Archives: Weight/Fat loss

12 Reasons Why Older Adults Need To Do Resistance Training Exercise: Part 2

Share this:

In part 1 of “12 reasons why older adults need to do resistance training exercise” I outlined some of the benefits to health that have been shown to occur as a result of partaking in regular resistance training exercise. The scientific evidence supporting the inclusion of resistance training as part of a healthy lifestyle is now indisputable. Whilst improvement of health is an obvious goal of many older athletes, it is the enhancement of sports performance that drives many in a quest to remain competitive, both against fellow competitors, but also – somewhat egocentrically – against their younger self. Even if you aren’t an elite masters athlete these benefits as outlined below can be truly life-changing.

Resistance training exercise remains an integral component of programs of most elite sportspeople. Increased maximal strength and power developed through the application of progressive resistance training has been shown to improve performance above and beyond that achieved by limiting training to sports specific training. This is now recognised by sports scientists, exercise physiologists, strength & conditioning experts and coaches.


strength training for over 60 female
Resistance Training Improves Older Athletes Performance (Picture: Pixabay)

Of particular note for older athletes is that the performance benefits may be even greater than that of younger elite athletes. One of the hallmark changes to occur with age is the progressive loss of strength with significant atrophy or loss of skeletal muscle playing a significant role. This fundamental biological change that occurs with ageing manifests in a gradual deterioration of physical function and performance.

However, there is compelling evidence that the trajectory of this decline is modifiable and can be attenuated by lifestyle factors. The data to support regular exercise as a key factor in preserving skeletal muscle and physical function is overwhelming. Resistance training is one of the very best methods currently available for older adults and masters athletes to stimulate the physiological processes required to increase myofibrillar protein synthesis rates, skeletal muscle hypertrophy and muscular strength. These skeletal muscle adaptations lie at the core of why this type of exercise improves the functional performance of older adults and athletic performance of masters athletes.

The following 6 compelling reasons explain why resistance exercise should be included in all training programs of older adults where enhanced performance – for activities of daily living or sporting – are desired.


strength training for over 60 female
Resistance training and bone strength (Picture: Pixabay)

Enhance skeletal health. Stronger bones can handle greater training loads and transfer muscular forces more effectively and efficiently. Bone mineral density (BMD) decreases as we age however this can be slowed by regular physical activity and appropriate nutrition. Risk of musculoskeletal injury is increased when bone strength is decreased with age, especially during falls that can cause catastrophic consequences for some.

Resistance training has been shown to be quite a potent stimulus for improving bone mineral density. Some evidence suggests that plyometric-type or jumping activities also provide an excellent training method to stimulate significant and positive bone adaptation which yields increased BMD and therefore stronger bones.

Masters cyclists as a group are unfortunately at an elevated risk of reduced BMD (weaker bones) due to the non-weight bearing nature of cycling. It is strongly recommended that all masters cyclists – in fact, all cyclists – should perform adjunctive resistance exercise in their training program (see links 1, 2, 3, 4 & 5).


strength training for over 60 female
Resistance Training And Skeletal Muscle (Picture: Google Images)

Maintain or increase lean body mass (skeletal muscle). Remember muscle is critical to both speed and endurance performance. From age 50 onwards muscle loss accelerates but there is a substantial amount of evidence that this is exacerbated by increased sedentarism (inactivity). Resistance training attenuates muscle mass loss.

Ageing is accompanied by reduced muscle mass and this has been mainly attributed to type II muscle fibre atrophy or reduction in size. It is unlikely that there is substantial muscle fibre loss however this remains to be elucidated. In older adults that have demonstrated substantial lean body mass loss and type II muscle fibre atrophy, prolonged resistance training has demonstrated significant increased muscle mass and this was shown to occur exclusively in type II muscle fibres. Nonetheless, some research has shown both type I and type II muscle fibre hypertrophy so more data is required to ascertain whether such things as age, gender, training status and training program parameters, affect muscle fibre changes and responsiveness to resistance training exercise (see links 1, 2, 3, 4, 5, 6).


Increased muscular strength, power and speed. Research investigating the effects of progressive resistance training programs demonstrate that muscle strength, power and speed improve, and in many case, quite impressively. In fact, even in nonagenarians, skeletal muscle strength and functional mobility assessed by a gait velocity test improved dramatically (>170% and 48% increase, respectively) after only 8 weeks of resistance training.

As mentioned above, the significant atrophy that occurs with age in fast-twitch type II muscle fibres, directly impacts performance of activities that require speed. Resistance training can reverse some of this decline, restore some of the lost contractile protein of these critical muscle fibres, increase maximum skeletal muscle strength and therefore elicit substantial improvements in movement speed of various specific sporting skills.

Older athletes that are avoiding or not adjusting their program to allow a little time to perform some resistance training exercise are missing out on some incredible benefits (see links 1, 2, 3, 4, 5).


strength training for over 60 female
Resistance Training And Body Fat

Lose body fat and get leaner. As outlined above, skeletal muscle mass decreases significantly from age 50 with concomitant decreases in resting metabolic rate (RMR). RMR is the largest component of total daily energy expenditure (TDEE) accounting for 60-80%. Whilst reductions in muscle mass account for a significant proportion of the accommodating changes in RMR, decreasing organ mass and decreases to specific metabolic rates of individual tissues also contribute to the decrease in RMR.

These age-related changes in RMR reduce TDEE. This may contribute to increased adiposity as we grow older given that energy intake to maintain body mass decreases proportionally to the degree of reduction in RMR and TDEE. In other words, if dietary habits and energy intake remains constant over time but RMR and TDEE decrease subsequent to the loss of skeletal muscle, positive energy balance may ensue and fat mass may therefore naturally increase.

Resistance training is well known for stimulating muscle hypertrophy or increasing skeletal muscle mass and has been shown to elicit reductions in fat mass in obesity during ad libitum diets. In contrast, aerobic exercise-induced weight loss consistently leads to reductions in lean body mass and RMR which may make the propensity of rebound fat gain more likely.

Inclusion of resistance training exercise in programs of older athletes or non-athletes doesn’t guarantee that there will be body fat loss (nutrition and diet obviously play a key role) but it certainly makes weight management easier and supports weight loss efforts if modifying the diet in an attempt to get leaner. Much of the research that has investigated the utility of resistance training in older adults demonstrates that it is a very effective fat loss strategy when performed with other lifestyle-based interventions aimed at improving physical function and body composition (see links 1, 2, 3, 4, 5).


strength training for over 60 female
Resistance Training And Endurance Performance (Picture: Google Images)

Improves endurance. Resistance training that is designed to increase muscle strength and power has been shown to improve endurance performance. More evidence exists to support such exercise in younger adult athletes as there has been limited research exclusively focused on older athletes.

Nonetheless, the research completed to date is strongly suggestive that resistance training enhances endurance in older athletes and non-athletes. A study conducted in 2010 demonstrated that strength training consisting of 10 sets of 10 repetitions of 1RM load, 3 minutes rest between each set, 3 times/week, increased both knee extensor maximal voluntary contraction torque and cycling efficiency. It is reasonable to postulate that had they utilised a program that incorporated more compound, complex, multi-jointed exercises such as squats and deadlifts – such that all major lower body muscle groups were strengthened – significantly greater cycling economical benefit would have been elicited.

When masters endurance runners were studied after following a resistance training program designed to increase maximal strength (4 sets of 3-4 repetitions at 85-90% of 1RM, two times per week), a significant improvement in running economy at marathon pace (6.1%) and dynamic leg strength (16.3%) was achieved.

It is proposed that the following training adaptations may facilitate endurance performance improvement:

  • the delayed use of the fast-twitch type II muscle fibers;
  • enhanced neuromuscular efficiency;
  • increased proportion of more fatigue-resistant fast-twitch type IIa fibres;
  • improved musculo-tendinous stiffness (see links 1, 2, 3).

strength training for over 60 female
Resistance Training and Injury Prevention (Picture: Google Images)

Reduce injury risk. Regularly performed resistance exercise can minimize the musculoskeletal alterations that occur during ageing. It may also contribute to the health and well-being of the older population.

There is strong evidence that suggests such exercise can prevent and control the development of several chronic musculoskeletal diseases. Improvement of physical fitness, function, and independence in older people, plus successful management of musculoskeletal disorders, results in dramatic improvements in quality of life.

Stronger muscles, bones, connective tissue, ligaments and tendons mean our limbs and joints are more able to handle the rigours of training, competing and activities of daily living (see links 1, 2, 3, 45).

In conclusion, based on the 12 reasons that I have explored which demonstrate profound benefits to both the health, functional and sporting performance of older athletes and non-athletes, resistance training is a must-do and should be a pivotal component of any exercise program.

To read “12 reasons why older adults need to do resistance training exercise: part 1” that explores the health-related benefits in older adults see here.


For local Townsville residents interested in FitGreyStrong’s Exercise Physiology services or exercise programs designed to achieve the mentioned benefits or to enhance athletic performance, contact FitGreyStrong@outlook.com or phone 0499 846 955 for a confidential discussion.

For other Australian residents or oversees readers interested in our services, please see here.


Disclaimer: All contents of the FitGreyStrong website/blog are provided for information and education purposes only. Those interested in making changes to their exercise, lifestyle, dietary, supplement or medication regimens should consult a relevantly qualified and competent health care professional. Those who decide to apply or implement any of the information, advice, and/or recommendations on this website do so knowingly and at their own risk. The owner and any contributors to this site accept no responsibility or liability whatsoever for any harm caused, real or imagined, from the use or distribution of information found at FitGreyStrong. Please leave this site immediately if you, the reader, find any of these conditions not acceptable.


© FitGreyStrong

Share this:

12 Reasons Why Older Adults Need To Do Resistance Training Exercise: Part 1

Share this:

What are they:

  1. Increases longevity and improves quality of life
  2. Helps manage hypertension and decreases heart disease
  3. Enhances sleep quality and quantity
  4. Prevents/treats type 2 diabetes & decreases inflammation
  5. Prevents cognitive decline & neurodegenerative disease
  6. Improves mental health 
  7. Enhances skeletal health
  8. Maintains or increases lean body mass (muscle)
  9. Increases strength, power, speed and physical function
  10. Reduces body fat and help maintain body fat loss
  11. Improves endurance performance 
  12. Reduces injury risk

Resistance or weight training is a critical component of training programs of most elite athletes irrespective of the sport. The benefits of resistance training – to increase maximal muscle strength and neuromuscular power – has long been recognised by most strength and conditioning experts, coaches and sport scientists as key to sporting performance. Logic would dictate therefore that if elite athletes are doing concurrent training to improve sport specific performance, masters athletes may also reap huge benefits too. There is now compelling evidence to suggest that resistance training can potentially augment athleticism of masters athletes well beyond that achieved by confining training to sports specific training. Furthermore, these significant benefits are not just limited to sprint, speed or power orientated sports but endurance performance may also be enhanced.

However, before I address the athletic performance benefits of resistance training for older athletes and functional enhancement such exercise has in older non-athletes (these will be outlined in part 2), I want to discuss the significant and sometimes life-changing health benefits that have been well documented in research conducted over the last 20 years. There is a great deal of data now to support the use of resistance training to help treat and manage a number of chronic diseases that become more prevalent as we get older. The following outlines 6 key reasons why resistance training exercise should be included in all programs of older athletes and exercise programs of older non-athletes.


strength training for over 50
Resistance Training Reduces The Risk Of Death

Reduce the risk of death. Evidence continues to accumulate to show that skeletal muscle strength is strongly predictive of longevity. Maximum muscle force in men aged 20-80 is independently and inversely associated with all-cause mortality. Over the age of 60 years, all cause and cancer-associated mortality is twice as likely in individuals with low compared to high skeletal muscle strength. Older adults over 15 years who reported twice/weekly strength training had 46% lower odds of all-cause mortality than those who did not. Resistance training when performed regularly is one of the best methods to increase skeletal muscle strength (see links 1, 2, 3, 4). A recent assessment of the research that has been conducted in older adults showed that resistance training substantially improved health-related quality of life. In other words, resistance training and getting stronger has a direct impact on our perception of how meaningful, manageable and comprehensible life is, and as such, significantly greater promotion of this type of activity is warranted (see here).


strength training for over 50
Resistance Training And Cardiovascular Health

Helps manage hypertension and decrease heart disease. High blood pressure can still affect masters athletes and resistance training when performed in conjunction with aerobic or endurance training has been shown to have a positive effect and reduce blood pressure. However, data to support resistance training as a stand alone practice is mixed with some studies suggesting improvement in systolic and diastolic blood pressure versus other research that has shown such exercise can increase arterial stiffness. Evidence tends to point to concurrent exercise (resistance training combined with aerobic exercise) as being the most effective for reducing the risk of heart disease (see links 1, 2, 3, 4).


strength training for over 50
Resistance Training Facilitates Better Sleep

Improves sleep quality and quantity. Problems with sleep are common with advancing years and occur in over half of adults age 65 and older. It has been estimated that insomnia affects about a third of the older population. The evidence to date suggests that poor sleep hygiene directly impacts and worsens many aspects of health including such things as mental health, obesity, heart disease, cognition, memory, executive function, metabolic disturbance and falls to name just a few.

Overall quality of life is thus dramatically reduced. Other factors associated with ageing, such as disease, changes in environment, or concurrent age-related processes also may contribute to problems of sleep. Sleep disturbance and long sleep duration, but not short sleep duration, have been shown to be associated with increases in markers of systemic inflammation. Research has shown that both sleep quality and quantity is improved with increased levels of exercise. Resistance training alone appears to positively impact sleep quality but more data is required to confirm that sleep quantity is equally improved (see links 1, 2, 3).


strength training for over 50
Diabetes Rates Continue To Increase

Prevent/treat type 2 diabetes & decrease inflammation. Type 2 diabetes mellitus (T2DM) is one of the fastest growing non-communicable diseases worldwide and occurs much more frequently in those that are overweight and obese. However, impaired blood glucose metabolism, one of the hallmarks of T2DM, is an increasingly common problem in those that are not overweight and have relatively normal BMI.  A poor and overindulgent diet – high in things like sugar, trans-fats, processed foods, junk foods and that are low in fish (omega-3 fatty acids), vegetables, fruit, fibre and high quality protein – combined with long-term sedentarism has been postulated as playing a leading causative role. Such a combination causes the development of chronic positive energy balance whereby excess energy disposal and adipose storage triggers a significant oxidative pro-inflammatory response referred to as metabolic inflammation.

In obesity, expanding adipose tissue attracts immune cells creating an inflammatory environment within this fatty acid storage organ. Skeletal muscle is the predominant site of insulin-mediated glucose uptake and insulin resistance is considered the primary defect that is evident years before the development of T2DM. Resistance training has consistently been shown to improve the ability of the skeletal muscles to take up and metabolise blood glucose (sugar) and is therefore an important strategy in managing T2DM. Finally, there is now scientific data to show that disorders that arise and are linked to inflammation (e.g. Insulin resistance, obesity, cardiovascular disease, diabetes, cancer, chronic kidney disease, osteoarthritis, Alzheimer’s disease and many more), can be improved or mitigated with resistance training and exercise (see links 1, 2, 3, 4, 5).


strength training for over 50 female
Resistance Training Enhances Brain Health

Prevent cognitive decline & neurodegenerative disease Recent research has shown that long-term resistance training in older women promotes executive function, memory, reduced cortical white matter atrophy and increased peak muscle power. Such findings are very exciting as they suggest that exercise and resistance training can modify brain neuroplasticity and help improve brain function. The current thinking is that resistance and physical exercise represents a promising nonpharmaceutical intervention to prevent age-related cognitive decline and neurodegenerative diseases such as dementia and Alzheimers. There is some evidence that the mechanisms behind these alterations may be related to increased levels of Brain-derived neurotrophic factor (BDNF) and IGF-1. BDNF-induced neuroplasticity is speculated to be facilitated by physical exercise but conclusive evidence supporting this mechanism of action has not yet been established (see links 1, 2, 3, 4).


strength training for over 50 female
Mental Health Is Significantly Improved with Resistance Training

Improved mental health. There is substantial evidence to demonstrate that resistance training and exercise more generally has a very dramatic and potent effect on improving mental health and treating those that suffer from mental health disorders. For example, research has shown that high-intensity resistance training is more effective than low-intensity resistance training or standard care by a GP in the treatment of depression in older patients. Resistance exercise has also be shown to reduce anxiety, slow the progression of white matter lesions in older women, improve symptomatology and disease severity in severe mental illness and essentially improve overall quality of life and general mental health (see links 1, 2, 3).

To finish up I cannot emphasise enough just how important resistance training exercise is for all older adults including masters athletes. The reasons mentioned above are only some of the many that support resistance training exercise as an essential ingredient of a healthy lifestyle and confirm current recommendations for people to partake in a minimum of 2 resistance training sessions per week.

To read part 2 of “12 reasons why older adults need to do resistance training exercise” which discusses the performance-enhancing benefits for older athletes and the incredible functional improvements that can be achieved in older non-athletes, see here.


For local Townsville residents interested in FitGreyStrong’s Exercise Physiology services or exercise programs designed to achieve the above-mentioned benefits or to enhance athletic performance, contact FitGreyStrong@outlook.com or phone 0499 846 955 for a confidential discussion.

For other Australian residents or oversees readers interested in our services, please see here.


Disclaimer: All contents of the FitGreyStrong website/blog are provided for information and education purposes only. Those interested in making changes to their exercise, lifestyle, dietary, supplement or medication regimens should consult a relevantly qualified and competent health care professional. Those who decide to apply or implement any of the information, advice, and/or recommendations on this website do so knowingly and at their own risk. The owner and any contributors to this site accept no responsibility or liability whatsoever for any harm caused, real or imagined, from the use or distribution of information found at FitGreyStrong. Please leave this site immediately if you, the reader, find any of these conditions not acceptable.


© FitGreyStrong
Share this:

Strength Training Alters The Trajectory Of Ageing

Share this:

On a global scale, the number of people over 60 yr is expected to more than double from 841 million in 2012 to more than 2 billion by 2050. This change in demographics will have profound implications for many aspects of life. Furthermore, Government bodies worldwide will be faced with considerable challenges related to aging policy and how best to deal with this new reality.

Of the many things that occur during the ageing process one of the most obvious signs is the loss of skeletal muscle mass (sarcopenia) and strength (dynapenia) with decrements in physical function and potential predisposition to disability. The process whereby there is a gradual loss of muscle mass and concomintant reduction in strength and physical function with ageing – is primarily caused by a loss in number of muscle fibres and preferential loss and atrophy of fast-twitch type-IIx fibres. The loss in fibre number and atrophy and loss of type-IIx fibres may be related to a loss of innervation of muscle fibres and a progressive loss of alpha-motorneurons (see here).

I want to try and explain, therefore, why I think it is so important for anyone over 40 to spend some time in their week lifting weights – or what is more technically known as resistance training (for the short version click here). There has been a significant amount of research conducted to show that one of the very best ways to slow down this process is to perform regular and challenging resistive-based exercise or weight training. Recently, more data has emerged suggesting that an even greater benefit may be achieved with high-velocity power training (see here here). Such training is slightly different to traditional strength training in that exercises are performed with light-to-moderate loads or weight, but movement speed is performed at fast to very fast speeds. Evidence demonstrates that such activity can even reverse some of the changes seen due to the combination of ageing and sedentariness, by specifically stimulating and increasing the strength and size of these fast twitch type-II muscle fibres (see here).

Over 25 years ago a seminal and ground-breaking research study was conducted which completely questioned our scientific understanding of what was possible when very old frail people were exposed to resistance training. In many ways the findings of this study are at the core of why most, if not all people over 40, should be doing some resistance training – colloquially speaking – “pumping iron”. Whilst weight, strength or resistance training may not be everyone’s cup of tea if there is one form of exercise that can substantially and dramatically improve functional physical capacity it is this form of exercise that promises so much.

To show that middle-aged or older adults derive huge benefits from lifting weights and strength training
Lifting weights helps keep older people young

A pivotal moment in my life occurred whilst doing PhD studies in the early 1990s. My project was to review the literature in a chosen area and my area of interest that I had developed for a while by then was resistance training. I had been introduced to this type of exercise as a means to improve athletic performance as an aspiring junior Track & Field athlete. The dramatic improvement in my performance once I had added this to my training program was extraordinary. Since that point in time I have lifted weights regularly and done countless squats, deadlifts, power cleans, tossed tractor tyres, pulled on pulley’s, performed push-ups, stood on Swiss Balls, jumped over hurdles……………………………………

I chose to focus on and study the morphological (structural) and functional changes that occur in human skeletal muscle as we age and what can be done to attenuate or slow these changes down. The simple answer to that question is to perform regular but challenging resistance training.

It was during this literature review that a very important piece of research came to my attention.

The question that had remained largely unanswered was how much of the biological “age-related” decline in muscle size, strength and function is attributable to ageing per se or to the extremely sedentary lifestyles adopted by many people as they grow older?

It is quite clear that both the ageing process and disuse syndromes (meaning no physical activity) contribute to a preferential loss of muscle fibres, specifically type-IIx fibres, and it is these muscle fibres that are involved in movements that require high amounts of force, power and speed. The critical question is, then, to what degree could intervening with a progressive resistance training program alter the trajectory of this decline in muscle strength and function and is it indeed possible to even reverse some portion of the assumed “age-related” decline seen in older people.

The study that everyone should read

The study that was published in JAMA (The Journal of the American Medical Association) June 13, 1990 by Maria Fiatarone and colleagues (see here) undertook to determine the feasibility and the physiological consequences of high-resistance strength training in the frail elderly. You are probably wondering just how frail. Well, not wanting to mince my words these participants were very frail and were probably coming to the final years or even months of their lives.

Their average age was just over 90, there were 6 women and 4 men, 60% had level 2 pattern of care (meaning they were not independent and required moderate assistance), 8 had a history of falls, 7 habitually used ambulatory assistive devices, there was over 4 chronic diseases per person and daily medications taken per person equated to more than 4. The most common medical diagnoses were osteoarthritis (7 subjects), coronary artery disease (6 subjects), osteoporotic fracture (6 subjects) and hypertension (4 subjects). Four of 10 subjects had anthropometric evidence of undernutrition and a substantial proportion did not obtain the recommended daily allowance for important micronutrients. (Click on graphs for clearer view of results)

To show the difference in cross-sectional area of skeletal muscle in older adults that are independent compared to those that require assistance
Muscle mass versus functional mobility

Muscle accounted for only 31% of the total cross-sectional area of the thigh as determined by CT scans, which meant that there was more fat and bone than muscle and it would be stating the obvious to you that this is not conducive to good balance, strength or functional mobility. Baseline muscle function was terrible with a 6 metre walk taking an average time of 22 seconds to complete with one subject taking almost 1 minute. Many struggled to raise themselves out of a chair without the assistance of their arms. Strength at the beginning of the study was positively correlated with fat-free mass (total muscle) and midthigh muscle area, whereas it was related inversely to time taken to stand from a chair and time to walk 6 metres.

What this means is that those that had more muscle tissue and greater strength at the start of the study (baseline) were able to perform better on the walk test and chair stand by executing these tasks more quickly.

Reduced physical strength and mobility with ageing affects health and wellbeing
The ageing process can be modified with exercise

Now to the interesting part of the study.

The results

Notwithstanding that there were only 10 elderly people involved, the findings were incredible and well beyond what was expected. What was even more surprising was only one simple exercise was employed: unilateral leg extension (i.e. single-leg) using a standard weight-and-pulley system. The 8-week training program used principles of progressive resistance training (in other words, as they got stronger the relative loads were increased), employed concentric and eccentric muscle contractions (whereby the muscle shortens and lengthens whilst under tension), trained 3 times/week completing 3 sets of 8 repetitions of each leg in 6-9 seconds/rep, with 1- to 2- minute rest periods between sets.

In light of their age, their general health status and the fact that they were only doing one simple exercise that primarily focused on the quadricep muscle (thigh) it would be within reason to think that the outcomes of the program would be quite negligible. However, that did not happen and this basically demonstrates that no matter how old, how injured, how dysfunctional you may be, your body and the skeletal muscle you stimulate – by performing challenging physical movement – will not only respond but it will respond quite robustly.

Exercise slows the ageing process and how weight training can increase muscle strength even the those that are 60, 70, 80 years old
Muscle strength improvement follows resistance training

Tolerance of the resistance training program was excellent with 90% completion rate (9 out of 10 finished), and no cardiovascular complications were seen. There was occasional hip and knee discomfort and that would be expected but no analgesics were required and no training sessions were missed. Gains in muscle strength were impressive and after just 8 weeks of training average strength had increased by over 170% and responsiveness to training was not different in men vs women. Some subjects made quite extraordinary gains of almost 400%. Muscle size increased in 5 of the 7 of the subjects that were CT scanned for total midthigh muscle area. Of those with stable body weight, the mean muscle area increases were significant with total midthigh muscle area going up 11.7%, the quadriceps up by 14.5% and the hamstrings/adductors by 10.6%.

Functional mobility accompanied the improvements in strength and muscle hypertrophy (growth). The time taken to complete the walking test improved substantially from 44 seconds to 29 seconds representing a 48% improvement. Two subjects no longer needed canes to walk at the end of the study and one of three subjects who could not initially rise from a chair without the use of their arms became able to do so. Importantly, no subjects experienced falls during the study. The physiological and functional improvements  were truly incredible. The effects of detraining were assessed too (stopped the program) and what this showed was that the gains made were very quickly lost with a significant 32% decrease in maximum strength after only 4 weeks of ceasing the training.

What are the major implications of these findings?

exercise physiology, exercise physiologist, Townsville Queensland Australia
Strength is fundamental to life

The results clearly demonstrated that progressive resistance training at sufficient loads (greater than 80% 1RM; i.e. lifting 80% of the maximum weight you can lift once) can induce dramatic and substantial increases in muscle strength, size and function in frail men and women up to 96 years of age. Achieving such favourable responses to strength training in these subjects is remarkable when one considers their very advanced age, extremely sedentary lifestyles, multiple chronic diseases and functional disabilities, and nutritional inadequacies. What is clear is that the preservation of fat-free mass (muscle) as one ages is a critical factor and directly affects muscle strength in the older person.

Exercise and resistance training specifically, is able to provide the neuromuscular system the appropriate physiological stimulus to reverse and modify a portion of the muscle weakness and functional loss often and simply put down to old age. Re-read that sentence because that is huge!

The final thing I would like to say on this study which deserves comment is that the results are all the more impressive because the subjects performed only one simple exercise (leg extension done unilaterally). Obviously if one employs resistance training exercises that are more complex, multi-jointed and aim to stimulate all the muscles of the upper and lower extremities (using different exercises) the structural and functional improvements would potentially be even greater.


For local Townsville residents interested in FitGreyStrong’s Exercise Physiology services or exercise programs designed to improve muscular strength, physical function (how you move around during the day) and quality of life or programs to enhance athletic performance, contact FitGreyStrong@outlook.com or phone 0499 846 955 for a confidential discussion.

For other Australian residents or oversees readers interested in our services, please see here.


Disclaimer: All contents of the FitGreyStrong website/blog are provided for information and education purposes only. Those interested in making changes to their exercise, lifestyle, dietary, supplement or medication regimens should consult a relevantly qualified and competent health care professional. Those who decide to apply or implement any of the information, advice, and/or recommendations on this website do so knowingly and at their own risk. The owner and any contributors to this site accept no responsibility or liability whatsoever for any harm caused, real or imagined, from the use or distribution of information found at FitGreyStrong. Please leave this site immediately if you, the reader, find any of these conditions not acceptable.

© FitGreyStrong


Share this:

Regular Exercise Doesn’t Promote Weight Loss: Fact or Fiction?

Share this:

Several years ago researchers and authors Malhotra, Noakes & Phinney published an article in the British Journal of Sports Medicine titled:

“It is time to bust the myth of physical inactivity and obesity: you cannot outrun a bad diet” (see here)

This created quite a storm in several fields of scientific research including many fitness and nutrition blogs. It was lambasted by some though as inaccurate and misleading – just Google the title of the article and you’ll understand what I mean. Essentially, their article claimed that regular physical activity does not promote weight loss and that excessive consumption of carbohydrates, in particular, sugar, is the primary cause of the obesity epidemic. Whilst excessive sugar consumption has played an important role in exacerbating the obesity crisis, it would be naive and short-sighted to suggest that this is the be-all and end-all in explaining society’s current predicament.

More recently Julia Belluz and Javier Zarracina published (April 2016) an article at Vox titled:

“Why you shouldn’t exercise to lose weight, explained with 60+ studies” (see here)

This article posits that exercise is unhelpful for weight loss and makes very similar claims to the Malhotra et al. paper. Of course, the real question is, are these claims valid? Could it really be true that weight loss is not facilitated by increasing daily energy expenditure and exercise? I think the answer to these questions are not black or white. My main concern with the articles mentioned above is that they are rather myopic, polarising and do not provide a fair and balanced assessment of the current evidence.

Instead, the evidence published to date demonstrates that ‘our’ increasing waistlines are closely related – but not confined to – the interaction of the following 3 factors. Firstly, the sum total of all physical movement performed whilst awake has substantially decreased over the last 50 years. Secondly, activities of a sedentary nature have dramatically increased. What are you doing right now? Thirdly, total energy intake over the last 50 years has continued to increase over and above total daily energy expenditure requirements. If movement levels are low and energy intake high – irrespective of where the excess is derived from – body weight, body fat and BMI will naturally increase. But does increasing physical activity levels via a formalised exercise program and/or non-exercise based physical activities (e.g. leisure time movement, domestic chores/activities) facilitate weight loss by increasing total daily energy expenditure? The answer to this is yes and no.

Today I want to focus on the evidence that was accessible following a  brief Google Scholar search that supports exercise as well as other non-exercise increases in daily physical movement as being promoters of weight loss. For anybody not familiar with Google Scholar (https://scholar.google.com.au), it is a search engine by Google that searches for only published, peer-reviewed journal-based research and consequently provides information that is evidence-based rather than ‘opinion-based’ which is largely what would be accessed via Google, Yahoo or any other search engine. So, what did I find?

One of the more interesting pieces of research that directly contradicts the article by Malhotra and co. is that written by Church et al. (2011). They concluded that over the last 50 years in the U.S., daily occupation-related energy expenditure was estimated to have decreased by more than 100 calories per day, and this reduction in energy expenditure could account for a significant portion of the increase in mean U.S. body weights for women and men. What this would suggest is that rather than increased obesity rates being caused exclusively by too many carbs or too much sugar, as argued by the “you can’t outrun a bad diet” article, the current problem has been driven by large reductions in energy expenditure due to changes to occupation-related physical movement. In other words, we have transitioned from jobs that are active and require a lot of physical movement to jobs now that have most of us sitting on our backsides for hours on end.

Work places changes to physical activity
Doing this all day can’t be helpful

Previous reports based on estimated caloric consumption from food production and food disappearance (food waste) estimates have concluded that increased caloric consumption could account for most, if not all, of the weight gained at a population level in the U.S. Nonetheless, a recently validated differential equation model was used to identify a conservative lower bound for the amount of food waste in the U.S. (Hall et al. 2009). This analysis determined that prior estimates of national food waste were grossly underestimated; indicating that the national average caloric intake was much lower than previously estimated. As such, these results and those of Church imply that increased caloric intake or for that matter, increased sugar consumption, cannot solely account for the observed trends in national weight gain in the US.

The following is a summary of some of the research that has been published investigating whether obesity is related to physical inactivity and what effect increased physical activity has on obesity risk and management.

1. Banks et al. (2010) reported that: “Obesity increases with increasing screen-time, independent of purposeful physical activity.”

2. Goodpaster et al. (2010) found that: “Among patients with severe obesity, a lifestyle intervention involving diet combined with initial or delayed initiation of physical activity resulted in clinically significant weight loss and favourable changes in cardiometabolic risk factors.” In the group where physical activity was delayed, the addition of such physical activity promoted greater reductions in waist circumference and hepatic fat content.

3. Banks et al. (2011) showed that: “Domestic activities and sedentary behaviours are important in relation to obesity in Thailand, independent of exercise-related physical activity. In this setting, programs to prevent and treat obesity through increasing general physical activity need to consider overall energy expenditure and address a wide range of low-intensity high-volume activities in order to be effective.”

4. Villareal et al. (2011) demonstrated that: “…in obese older adults a combination of weight loss and exercise provides greater improvement in physical function than either intervention alone.”

5. McGuire & Ross (2012) reported that: “…light physical activity, incidental physical activity and sedentary behaviour were not associated with abdominal obesity amongst inactive men and women whereas moderate-to-vigourous physical activity predicted lower visceral adipose tissue.”

6. The study by Fan et al. (2013) was: “…to test if moderate-to-vigorous physical activity (MVPA) in less than the recommended ≥10-minute bouts related to weight outcomes.” Both higher-intensity short bouts and long bouts of physical activity related to lower BMI and risk of overweight/obesity whereas neither lower-intensity short bouts nor long bouts related to BMI or risk of overweight/obesity. They concluded that: “The current ≥10-minute MVPA bouts guideline was based on health benefits other than weight outcomes. Our findings showed that for weight gain prevention, accumulated higher-intensity PA bouts of <10 minutes are highly beneficial, supporting the public health promotion message that ‘every minute counts’.”

7. Cleland et al. (2014) found that: “High sitting and low activity increased obesity odds among adults. Irrespective of sitting, men with low step counts had increased odds of obesity. The findings highlight the importance of engaging in physical activity and limiting sitting.”

8. Jakicic et al. (2014) concluded that moderate-to-vigorous physical activity (MVPA > 10) of 200-300 min per week, coupled with increased amounts of low-intensity physical activity (LPA), are associated with improved long-term weight loss. Interventions should promote engagement in these amounts and types of physical activity.

9. Murabito et al. (2015) discovered that moderate-to-vigorous physical activity (MVPA) as measured by accelerometry was associated with less visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) and better fat quality as assessed by multi-detector computed tomography. With increasing MVPA, there was a concomitant decrease in VAT. Higher levels of MVPA were associated with higher SAT fat quality, even after adjustment for SAT volume. They concluded that:

“MVPA was associated with less VAT and SAT and better fat quality.”

10. Mekary et al (2015) reported that: “….over 12 years long-term weight training is associated with less waist circumference increase, whilst moderate-to-vigorous aerobic activity was associated with less body weight gain in healthy men.”

11. Hume et al. (2016) concluded that: “….counter to the energy surfeit model of obesity, results suggest that increasing energy expenditure may be more effective for reducing body fat than caloric restriction, which is currently the treatment of choice for obesity.”

12. Myers et al. (2016) suggests that there exists clear associations among objective measures of physical activity, sedentary behaviour, energy expenditure, adiposity and appetite control. They produced data that indicates strong links between physical inactivity and obesity with this relationship likely to be bidirectional.

13. Wu et al. (2017) tested 12-weeks of low- and high-intensity exercise training in Mexican-American and Korean premenopausal overweight/obese women. Results showed that such exercise reduced body mass index, body fat percentage, fat mass and visceral adipose tissue with concurrent increases in lean mass.

14. Quist et al. (2018) examined the effects of 6-months of active commuting and leisure-time exercise on fat loss in women and men who were overweight or obese. Clinically meaningful fat loss of over 4 kilograms was elicited. Vigorous intensity exercise was shown to be more effective in reducing body fat versus moderate intensity exercise.

15. Stoner et al. (2019) concluded that the findings of their meta-regression “lend support to the use of exercise prescription for promoting weight loss and improving health outcomes in adolescents with overweight/obesity.”

16. Zhang et al. (2020) found that 12-weeks of intense exercise (without concurrent nutritional intervention, i.e. ‘put on a diet’) significantly improved cardiometabolic parameters (i.e. fasting blood glucose) and decreased weight, total percent body fat, whole-body fat mass, android, gynoid, and trunk fat mass, abdominal subcutaneous fat and abdominal visceral fat. Reductions of over 15 cm² of abdominal visceral fat were achieved in just 3 months!

17. Berge et al. (2021) produced clinically significant weight loss in people with severe obesity despite the study having no specific focus on body weight reduction. The group that performed moderate‐intensity continuous training combined with high‐intensity interval training lost an average of 5 kilograms in 24-weeks.

Weight training, older adults and quality of life
Staying strong as we age is critical to health

What does this research tell us?

Quite a lot I would say. Of particular note is that this only represents a very small sample of the evidence that directly counters the claim that widespread societal levels of physical inactivity have little to do with burgeoning obesity rates. What is more, it crystallizes just how contentious Malhotra, Noakes & Phinney’s editorial was. Exclusively assigning blame for the obesity epidemic to the excessive intake of sugar is not supported, I believe, by the current evidence. The dramatic reductions in the sum total of all physical activity accumulated during the day appears to account for a substantial amount of the increased weight seen in recent decades.

Firstly, there is a substantial amount of research which demonstrates that sedentary behaviours, sitting time and low physical activity levels manifestly increase one’s risk of becoming overweight or obese. Secondly, moderate-to-vigourous physical activity compared to light physical activity has been shown to be associated with less visceral and subcutaneous adipose tissue, impacts positive effects on fat quality, is related to lower BMI, lowers risk of overweight/obesity, prevents weight gain following weight loss, promotes greater reductions in waist circumference and produces favourable changes in cardio-metabolic risk factors.

So to conclude, my Google Scholar search unveiled that there is a large body of evidence that demonstrates that there may be no myth to bust regarding obesity and physical inactivity or foundation to suggesting that physical activity plays no role toward promoting weight loss. Others have been critical of this line of thinking too, in particular Dr Steven Blair, so I would suggest that if you wanted to read further on this here would be a good place to start.

My next article will explore the evidence that exercise does not assist weight loss in all exercisers due to various compensatory mechanisms (see here). Until then, stay active, keep moving and don’t forget to include some resistance exercise in your week.


For local Townsville residents interested in FitGreyStrong’s Exercise Physiology services or exercise programs designed to improve health, physical function and quality of life or to enhance athletic performance, contact FitGreyStrong@outlook.com or phone 0499 846 955 for a confidential discussion.

For other Australian residents or oversees readers interested in our services, please see here.


Disclaimer: All contents of the FitGreyStrong website/blog are provided for information and education purposes only. Those interested in making changes to their exercise, lifestyle, dietary, supplement or medication regimens should consult a relevantly qualified and competent health care professional. Those who decide to apply or implement any of the information, advice, and/or recommendations on this website do so knowingly and at their own risk. The owner and any contributors to this site accept no responsibility or liability whatsoever for any harm caused, real or imagined, from the use or distribution of information found at FitGreyStrong. Please leave this site immediately if you, the reader, find any of these conditions not acceptable.
© FitGreyStrong
Share this: