Tag Archives: MVPA

Regular Exercise Doesn’t Promote Weight Loss: Fact or Fiction?

Share this:

Several years ago researchers and authors Malhotra, Noakes & Phinney published an article in the British Journal of Sports Medicine titled:

“It is time to bust the myth of physical inactivity and obesity: you cannot outrun a bad diet” (see here)

This created quite a storm in several fields of scientific research including many fitness and nutrition blogs. It was lambasted by some though as inaccurate and misleading – just Google the title of the article and you’ll understand what I mean. Essentially, their article claimed that regular physical activity does not promote weight loss and that excessive consumption of carbohydrates, in particular, sugar, is the primary cause of the obesity epidemic. Whilst excessive sugar consumption has played an important role in exacerbating the obesity crisis, it would be naive and short-sighted to suggest that this is the be-all and end-all in explaining society’s current predicament.

More recently Julia Belluz and Javier Zarracina published (April 2016) an article at Vox titled:

“Why you shouldn’t exercise to lose weight, explained with 60+ studies” (see here)

This article posits that exercise is unhelpful for weight loss and makes very similar claims to the Malhotra et al. paper. Of course, the real question is, are these claims valid? Could it really be true that weight loss is not facilitated by increasing daily energy expenditure and exercise? I think the answer to these questions are not black or white. My main concern with the articles mentioned above is that they are rather myopic, polarising and do not provide a fair and balanced assessment of the current evidence.

Instead, the evidence published to date demonstrates that ‘our’ increasing waistlines are closely related – but not confined to – the interaction of the following 3 factors. Firstly, the sum total of all physical movement performed whilst awake has substantially decreased over the last 50 years. Secondly, activities of a sedentary nature have dramatically increased. What are you doing right now? Thirdly, total energy intake over the last 50 years has continued to increase over and above total daily energy expenditure requirements. If movement levels are low and energy intake high – irrespective of where the excess is derived from – body weight, body fat and BMI will naturally increase. But does increasing physical activity levels via a formalised exercise program and/or non-exercise based physical activities (e.g. leisure time movement, domestic chores/activities) facilitate weight loss by increasing total daily energy expenditure? The answer to this is yes and no.

Today I want to focus on the evidence that was accessible following a  brief Google Scholar search that supports exercise as well as other non-exercise increases in daily physical movement as being promoters of weight loss. For anybody not familiar with Google Scholar (https://scholar.google.com.au), it is a search engine by Google that searches for only published, peer-reviewed journal-based research and consequently provides information that is evidence-based rather than ‘opinion-based’ which is largely what would be accessed via Google, Yahoo or any other search engine. So, what did I find?

One of the more interesting pieces of research that directly contradicts the article by Malhotra and co. is that written by Church et al. (2011). They concluded that over the last 50 years in the U.S., daily occupation-related energy expenditure was estimated to have decreased by more than 100 calories per day, and this reduction in energy expenditure could account for a significant portion of the increase in mean U.S. body weights for women and men. What this would suggest is that rather than increased obesity rates being caused exclusively by too many carbs or too much sugar, as argued by the “you can’t outrun a bad diet” article, the current problem has been driven by large reductions in energy expenditure due to changes to occupation-related physical movement. In other words, we have transitioned from jobs that are active and require a lot of physical movement to jobs now that have most of us sitting on our backsides for hours on end.

Work places changes to physical activity
Doing this all day can’t be helpful

Previous reports based on estimated caloric consumption from food production and food disappearance (food waste) estimates have concluded that increased caloric consumption could account for most, if not all, of the weight gained at a population level in the U.S. Nonetheless, a recently validated differential equation model was used to identify a conservative lower bound for the amount of food waste in the U.S. (Hall et al. 2009). This analysis determined that prior estimates of national food waste were grossly underestimated; indicating that the national average caloric intake was much lower than previously estimated. As such, these results and those of Church imply that increased caloric intake or for that matter, increased sugar consumption, cannot solely account for the observed trends in national weight gain in the US.

The following is a summary of some of the research that has been published investigating whether obesity is related to physical inactivity and what effect increased physical activity has on obesity risk and management.

1. Banks et al. (2010) reported that: “Obesity increases with increasing screen-time, independent of purposeful physical activity.”

2. Goodpaster et al. (2010) found that: “Among patients with severe obesity, a lifestyle intervention involving diet combined with initial or delayed initiation of physical activity resulted in clinically significant weight loss and favourable changes in cardiometabolic risk factors.” In the group where physical activity was delayed, the addition of such physical activity promoted greater reductions in waist circumference and hepatic fat content.

3. Banks et al. (2011) showed that: “Domestic activities and sedentary behaviours are important in relation to obesity in Thailand, independent of exercise-related physical activity. In this setting, programs to prevent and treat obesity through increasing general physical activity need to consider overall energy expenditure and address a wide range of low-intensity high-volume activities in order to be effective.”

4. Villareal et al. (2011) demonstrated that: “…in obese older adults a combination of weight loss and exercise provides greater improvement in physical function than either intervention alone.”

5. McGuire & Ross (2012) reported that: “…light physical activity, incidental physical activity and sedentary behaviour were not associated with abdominal obesity amongst inactive men and women whereas moderate-to-vigourous physical activity predicted lower visceral adipose tissue.”

6. The study by Fan et al. (2013) was: “…to test if moderate-to-vigorous physical activity (MVPA) in less than the recommended ≥10-minute bouts related to weight outcomes.” Both higher-intensity short bouts and long bouts of physical activity related to lower BMI and risk of overweight/obesity whereas neither lower-intensity short bouts nor long bouts related to BMI or risk of overweight/obesity. They concluded that: “The current ≥10-minute MVPA bouts guideline was based on health benefits other than weight outcomes. Our findings showed that for weight gain prevention, accumulated higher-intensity PA bouts of <10 minutes are highly beneficial, supporting the public health promotion message that ‘every minute counts’.”

7. Cleland et al. (2014) found that: “High sitting and low activity increased obesity odds among adults. Irrespective of sitting, men with low step counts had increased odds of obesity. The findings highlight the importance of engaging in physical activity and limiting sitting.”

8. Jakicic et al. (2014) concluded that moderate-to-vigorous physical activity (MVPA > 10) of 200-300 min per week, coupled with increased amounts of low-intensity physical activity (LPA), are associated with improved long-term weight loss. Interventions should promote engagement in these amounts and types of physical activity.

9. Murabito et al. (2015) discovered that moderate-to-vigorous physical activity (MVPA) as measured by accelerometry was associated with less visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) and better fat quality as assessed by multi-detector computed tomography. With increasing MVPA, there was a concomitant decrease in VAT. Higher levels of MVPA were associated with higher SAT fat quality, even after adjustment for SAT volume. They concluded that:

“MVPA was associated with less VAT and SAT and better fat quality.”

10. Mekary et al (2015) reported that: “….over 12 years long-term weight training is associated with less waist circumference increase, whilst moderate-to-vigorous aerobic activity was associated with less body weight gain in healthy men.”

11. Hume et al. (2016) concluded that: “….counter to the energy surfeit model of obesity, results suggest that increasing energy expenditure may be more effective for reducing body fat than caloric restriction, which is currently the treatment of choice for obesity.”

12. Myers et al. (2016) suggests that there exists clear associations among objective measures of physical activity, sedentary behaviour, energy expenditure, adiposity and appetite control. They produced data that indicates strong links between physical inactivity and obesity with this relationship likely to be bidirectional.

13. Wu et al. (2017) tested 12-weeks of low- and high-intensity exercise training in Mexican-American and Korean premenopausal overweight/obese women. Results showed that such exercise reduced body mass index, body fat percentage, fat mass and visceral adipose tissue with concurrent increases in lean mass.

14. Quist et al. (2018) examined the effects of 6-months of active commuting and leisure-time exercise on fat loss in women and men who were overweight or obese. Clinically meaningful fat loss of over 4 kilograms was elicited. Vigorous intensity exercise was shown to be more effective in reducing body fat versus moderate intensity exercise.

15. Stoner et al. (2019) concluded that the findings of their meta-regression “lend support to the use of exercise prescription for promoting weight loss and improving health outcomes in adolescents with overweight/obesity.”

16. Zhang et al. (2020) found that 12-weeks of intense exercise (without concurrent nutritional intervention, i.e. ‘put on a diet’) significantly improved cardiometabolic parameters (i.e. fasting blood glucose) and decreased weight, total percent body fat, whole-body fat mass, android, gynoid, and trunk fat mass, abdominal subcutaneous fat and abdominal visceral fat. Reductions of over 15 cm² of abdominal visceral fat were achieved in just 3 months!

17. Berge et al. (2021) produced clinically significant weight loss in people with severe obesity despite the study having no specific focus on body weight reduction. The group that performed moderate‐intensity continuous training combined with high‐intensity interval training lost an average of 5 kilograms in 24-weeks.

Weight training, older adults and quality of life
Staying strong as we age is critical to health

What does this research tell us?

Quite a lot I would say. Of particular note is that this only represents a very small sample of the evidence that directly counters the claim that widespread societal levels of physical inactivity have little to do with burgeoning obesity rates. What is more, it crystallizes just how contentious Malhotra, Noakes & Phinney’s editorial was. Exclusively assigning blame for the obesity epidemic to the excessive intake of sugar is not supported, I believe, by the current evidence. The dramatic reductions in the sum total of all physical activity accumulated during the day appears to account for a substantial amount of the increased weight seen in recent decades.

Firstly, there is a substantial amount of research which demonstrates that sedentary behaviours, sitting time and low physical activity levels manifestly increase one’s risk of becoming overweight or obese. Secondly, moderate-to-vigourous physical activity compared to light physical activity has been shown to be associated with less visceral and subcutaneous adipose tissue, impacts positive effects on fat quality, is related to lower BMI, lowers risk of overweight/obesity, prevents weight gain following weight loss, promotes greater reductions in waist circumference and produces favourable changes in cardio-metabolic risk factors.

So to conclude, my Google Scholar search unveiled that there is a large body of evidence that demonstrates that there may be no myth to bust regarding obesity and physical inactivity or foundation to suggesting that physical activity plays no role toward promoting weight loss. Others have been critical of this line of thinking too, in particular Dr Steven Blair, so I would suggest that if you wanted to read further on this here would be a good place to start.

My next article will explore the evidence that exercise does not assist weight loss in all exercisers due to various compensatory mechanisms (see here). Until then, stay active, keep moving and don’t forget to include some resistance exercise in your week.


For local Townsville residents interested in FitGreyStrong’s Exercise Physiology services or exercise programs designed to improve health, physical function and quality of life or to enhance athletic performance, contact FitGreyStrong@outlook.com or phone 0499 846 955 for a confidential discussion.

For other Australian residents or oversees readers interested in our services, please see here.


Disclaimer: All contents of the FitGreyStrong website/blog are provided for information and education purposes only. Those interested in making changes to their exercise, lifestyle, dietary, supplement or medication regimens should consult a relevantly qualified and competent health care professional. Those who decide to apply or implement any of the information, advice, and/or recommendations on this website do so knowingly and at their own risk. The owner and any contributors to this site accept no responsibility or liability whatsoever for any harm caused, real or imagined, from the use or distribution of information found at FitGreyStrong. Please leave this site immediately if you, the reader, find any of these conditions not acceptable.
© FitGreyStrong
Share this:

Don’t believe everything you watch, even if it is a TED talk….

Share this:

Recently my scientific curiosity was piqued after watching this edited short piece from the TED talk by Susan Pinker. Her presentation titled “The secret to living longer may be your social life” explored (as described in the video) the “least to strongest predictors of reducing your chances of dying”. Now let me be clear. It not my intention to dispute the central argument of Pinker’s presentation, which is that strong social relationships, good social integration and minimal social isolation are all critically important to our wellbeing, as the data shows that this is so. What I do want to contest, however, is her claims made regarding the effects of exercise on mortality, as this is what primarily interests me as an Exercise Scientist. I wanted to confirm that what was presented actually reflects the current body of evidence and the latest science published in this area. My contention is that what she presented in the abovementioned TED talk does not in fact do this. I have not researched whether the effect sizes purported for other parameters (such as smoking, alcohol, obesity etc) hold up. I did initially suspect that the effect size reported for exercise was outdated. After assessing the research and literature, there are a number of erroneous claims made and outdated science used that, in my opinion, require critique and comment.

Pinker cites the work of Julianne Holt-Lunstad and states the following (taken directly from the transcript):

6:22

Now, these centenarians’ stories along with the science that underpins them prompted me to ask myself some questions too, such as, when am I going to die and how can I put that day off? And as you will see, the answer is not what we expect. Julianne Holt-Lunstad is a researcher at Brigham Young University and she addressed this very question in a series of studies of tens of thousands of middle aged people much like this audience here. And she looked at every aspect of their lifestyle:their diet, their exercise, their marital status, how often they went to the doctor, whether they smoked or drank, etc. She recorded all of this and then she and her colleagues sat tight and waited for seven years to see who would still be breathing. And of the people left standing, what reduced their chances of dying the most? That was her question.

07:19

So let’s now look at her data in summary, going from the least powerful predictor to the strongest.OK? So clean air, which is great, it doesn’t predict how long you will live. Whether you have your hypertension treated is good. Still not a strong predictor. Whether you’re lean or overweight, you can stop feeling guilty about this, because it’s only in third place. How much exercise you get is next, still only a moderate predictor. Whether you’ve had a cardiac event and you’re in rehab and exercising,getting higher now. Whether you’ve had a flu vaccine. Did anybody here know that having a flu vaccine protects you more than doing exercise? Whether you were drinking and quit, or whether you’re a moderate drinker, whether you don’t smoke, or if you did, whether you quit, and getting towards the top predictors are two features of your social life. First, your close relationships. These are the people that you can call on for a loan if you need money suddenly, who will call the doctor if you’re not feeling well or who will take you to the hospital, or who will sit with you if you’re having an existential crisis, if you’re in despair. Those people, that little clutch of people are a strong predictor, if you have them, of how long you’ll live. And then something that surprised me, something that’s called social integration. This means how much you interact with people as you move through your day.How many people do you talk to? And these mean both your weak and your strong bonds, so not just the people you’re really close to, who mean a lot to you, but, like, do you talk to the guy who every day makes you your coffee? Do you talk to the postman? Do you talk to the woman who walks by your house every day with her dog? Do you play bridge or poker, have a book club? Those interactions are one of the strongest predictors of how long you’ll live.

Comments:

The 2 studies cited in the footnotes (notes and references) section in support of Pinker’s claims regarding the above are the following: a) Social relationships and mortality risk: A meta-analytic review,” Holt-Lunstad, Julianne, Smith, Timothy R., and Layton, Bradley J, PLOS Medicine, 2010 and b) “Loneliness and Social Isolation as Risk Factors for Mortality,” Julianne Holt-Lunstad, Perspectives on Psychological Science, 2015. Both these studies were meta-analytical reviews conducted to determine the extent to which social relationships and social isolation influence risk for mortality. They clearly and rightly show that the quality and strength of the social relationships, social integration and social isolation that we experience are key determinants and predictors of premature death.

However, Holt-Lunstad’s research and her meta-analytical studies did not directly collect, analyse or assess the impact of diet, exercise, obesity, alcohol, smoking etc over a 7-year period on mortality as claimed by Pinker. This data was extracted from other meta-analyses that were performed by other researchers.

Let’s look at the graph that Pinker uses to illustrate her argument.

least to strongest predictors of reducing your chances of dying
Susan Pinker: “What reduces your chances of dying the most?”

The graph used by Pinker in her presentation is a modification of this graph (see below and click on for a clearer image) from the paper Social relationships and mortality risk: A meta-analytic review,” Holt-Lunstad, Julianne, Smith, Timothy R., and Layton, Bradley J, PLOS Medicine, 2010

The secret to living longer may be your social life
The evidence used for exercise and mortality

As you can see the effect sizes for things like smoking, alcohol, exercise, obesity have not been derived from Julianne Holt-Lunstad’s primary research. These have been extracted from other meta-analyses that Holt-Lunstad had nothing to do with. You can see the letters against each predictor (eg smoking) and the associated reference with the effect size taken from this. Figure 6 was created to compare and contrast how important social relationships and connections are to us, with other well known influencers and determinants of mortality.

As an Exercise Scientist I was particularly curious by Holt-Lunstad’s ranking of exercise in the least to strongest predictors graph as depicted in her paper and was very keen to have a look at this research given that the claims promulgated by Pinker hinges on this evidence.

As you can see in the picture above (highlighted in yellow) the effect size used for exercise was taken from this study: Katzmarzyk, Janssen, and Ardern, 2003 [210]. A 15-year-old meta-analysis. Here’s a screenshot of the reference list with the highlighted study used to rank exercise in Pinkers graph above.

The secret to living longer may be your social life
A 15-year-old meta-analysis was used as evidence

The key questions in my mind are:

  • Does the Katzmarzyk et al. (2003) meta-analysis still represent and reflect the best and most robust evidence currently available?
  • Has there been any additional research since 2003 that has changed our understanding regarding the impact of exercise on all-cause, CVD-related and cancer-related mortality?
  • Is the graph that Pinker hinges her “least and strongest predictors of how long you’ll live” argument on, still hold up?

The simple answers to these questions I believe, are no, yes and no.

One of the big changes in exercise research over the last decade or so is the development of, and refinement in how accurately physical activity and exercise can be measured. In earlier studies that assessed the effects of exercise on mortality, the methods utilised to ascertain the data on the amount of exercise performed was quite crude and was established subjectively. In other words, those involved in such studies were usually asked via a questionnaire how much exercise and/or physical activity do they do everyday/in a week? As you would appreciate data collected in this fashion is unlikely to be very accurate. It would not therefore be a true reflection of what participants were actually doing.

This is precisely the problem with the Katzmarzyk et al. (2003) meta-analysis that was used by Holt-Lunstad in her paper and which Pinker cites in her presentation, in that results were based on subjective determinations of exercise. More recent research has moved to much more accurate and nuanced methods to establish the magnitude and intensity of physical activity and exercise in such studies.

Devices known as accelerometers have revolutionised the objective daily measurement of exercise and physical activity. Over the last few years several studies have been published that have used accelerometers to determine objective levels of exercise/physical activity. Some of the first to use triaxial devices (capable of measuring activity along 3 planes), which increase the sensitivity for recognising physical activity, are now appearing in scientific journals and thus give us a much more insightful picture into the role or impact of exercise and physical activity on mortality (see here).

Now you may be curious or wondering, what do these studies tell us about this relationship and is it any different to the Katzmarzyk et al. (2003) meta-analysis used by Holt-Lunstad in her above graph and cited by Pinker in her TED presentation?

Let’s take a look at some of the key findings from some of these accelerometer-based studies. In brief, Lee et al. (2017) found that there was a strong inverse association between overall volume of physical activity and all-cause mortality. In fact, the magnitude of risk reduction (≈60%–70%; comparing least to most active) was far larger than that estimated from meta-analyses of studies using self-reported PA (≈20%–30%). In the Dohrn et al. (2017) study, compared with the least sedentary participants (i.e. those with the highest levels of moderate-to-vigorous physical activity or MVPA), those in the most sedentary group had an increased risk of all-cause mortality, hazard ratio: 2.7, CVD mortality, hazard ratio: 5.5 and cancer mortality, hazard ratio: 4.3. These hazard ratios are substantial. Those that spent the most time in MVPA showed huge risk reductions for all-cause mortality (over 60%), CVD mortality (almost 90%) and cancer mortality (over 80%). Evenson et al. (2016) found that having higher accelerometer-assessed average counts per minute was associated with lower all-cause mortality risk. The adjusted hazard ratio was 0.37 for those most active when compared to those most inactive; a 63% risk reduction in mortality. Results were similar for CVD mortality.

What does this mean for the graph that Pinker used in her presentation that I have been discussing. In short, a lot. The influence and impact of exercise and physical activity on mortality is far stronger than many acknowledge or give credit. Based on more recent research that is able to accurately quantify levels of physical activity and exercise, particularly MVPA, much greater promotion, awareness and utilisation (and rightly so) should be placed on one of the most powerful ways of reducing your chances of premature death. Unfortunately, this TED talk by Susan Pinker cites what is arguably outdated 15-year old exercise data that diminishes and misconstrues – to a significantly large and impressionable audience – the very strong inverse relationship that exists between physical activity and mortality. This needs to be called out, so here you go, I am calling this out as loudly as I can.

The secret to living longer may be your social life
Exercise does truly reduce your chances of dying prematurely

  

NB. Whilst the above blog focused on the veracity of data used, and claims made for exercise in the discussed presentation, it remains to be seen as to whether the other predictors in the graph (excluding the social relationships data) are accurate and robust. I would therefore suggest that one should be mindful of this when watching this TED talk.


For local Townsville residents interested in FitGreyStrong’s Exercise Physiology services or exercise programs designed to improve physical fitness, health and quality of life or programs to enhance athletic performance, contact FitGreyStrong@outlook.com or phone 0499 846 955 for a confidential discussion.

For other Australian residents or oversees readers interested in our services, please see here.


Disclaimer: All contents of the FitGreyStrong website/blog are provided for information and education purposes only. Those interested in making changes to their exercise, lifestyle, dietary, supplement or medication regimens should consult a relevantly qualified and competent health care professional. Those who decide to apply or implement any of the information, advice, and/or recommendations on this website do so knowingly and at their own risk. The owner and any contributors to this site accept no responsibility or liability whatsoever for any harm caused, real or imagined, from the use or distribution of information found at FitGreyStrong. Please leave this site immediately if you, the reader, find any of these conditions not acceptable.
© FitGreyStrong

Share this: