Tag Archives: muscle mass

Is creatine as good as it’s cracked up to be? Older adults and resistance training

Share this:

What is creatine? 

The use of creatine (Cr) can be traced back to the early 1990s when several elite sprint athletes reported performance-enhancing benefits following gold medal winning performances at the 1992 Barcelona Olympic Games (Anderson, 1993). This sparked the birth of a new era with creatine gaining widespread popularity as a legitimate ergogenic aid (Bird, 2003). Creatine is a nitrogenous organic acid abundant in metabolically active muscle, heart and brain tissue. It is synthesised endogenously in the liver and kidneys from the amino acids arginine, glycine and methionine, and absorbed from the diet primarily from red and white meat (Chilibeck et al., 2017; Phillips, 2015). Most creatine is stored intramuscularly as phosphocreatine (PCr) (Candow et al., 2014). PCr functions principally as a temporal energy buffer by donating a high-energy phosphate to ADP through the enzymatic reaction of creatine kinase, which re-synthesises and replenishes ATP stores and thus helps maintain skeletal muscle energy availability during very short, intense anaerobic exercise (Kreider et al.,, 2017; Candow et al., 2014; Candow & Chillibeck, 2010). PCr also acts as a spatial energy buffer shuttling intracellular energy between mitochondria and sites of cellular ATP utilization (Kreider et al., 2017; Gualano et al., 2016). 

To show that older women can get a lot of benefits from getting fitter and stronger and need to lift weights
Older people embrace powerlifting in Castlemaine (Australia) to avoid aged care home (courtesy ABC news)

Creatine supplementation increases the Cr/PCr reservoir by 20-40% (Kreider et al., 2017) and it is posited that this enhances PCr-mediated ATP resynthesis during and after high-intensity exercise bouts (Deane et al., 2017; Close et al., 2016), thereby allowing greater amounts of work to be accomplished (Phillips, 2015). This is particularly relevant for resistance training (RT) given that a dose-response relationship has been shown to exist between training volume and gains in skeletal muscle mass (Schoenfeld et al., 2017a; Schoenfeld et al., 2017b), and muscle strength (Figueiredo et al., 2017; Ralston et al., 2017). Other possible mechanisms to account for creatine ergogenicity are reduced exercise-induced muscle damage, reduced oxidative stress, increased GLUT4 in muscle fibre membranes, increased cell swelling that activates protein synthesis within muscle fibres, and decreased reliance on anaerobic glycolysis/reduced lactate production (Chilibeck et al., 2017; Kreider et al., 2017; Devries and Phillips, 2014). Although the exact mechanisms of action are still to be determined (Phillips, 2015), creatine supplemented RT has been extensively researched, especially in younger populations (Buford et al., 2007; Kreider et al., 2017). Consuming 5 grams of creatine (or 0.3 grams per kilogram body weight) four times daily for 5-7 days is generally viewed as the most effective way to increase muscle creatine stores and can be adequately maintained by consuming 3-5 grams/day following this loading phase (Kreider et al., 2017).

To show the differences in creatine uptake in muscle following supplementation in vegetarian, normal, creatine loading and creatine loading with cho or cho/pro
Muscle total creatine stores (figure courtesy of Kreider et al. 2017, J Int Soc Sports Nutr.)

Is creatine effective in older adults?

Three meta-analyses of randomised, placebo-controlled trials (Chilibeck et al., 2017; Candow et al., 2014; Devries and Phillips, 2014) have been published on the effects of creatine supplementation during RT on lean tissue mass and muscle strength in middle-aged and older adults (45-80 years old). No meta-analysis has yet assessed the effectiveness of creatine on RT outcomes in adults specifically 60 years or older. Most recently, Chilibeck et al. (2017, pg219) found significantly greater increases in lean tissue mass (1.4 kg; SMD=1.35), upper (i.e. chest press; SMD=0.37) and lower (i.e. leg press; SMD=0.25) body muscle strength when middle-aged to older adults (50-80 years old) were supplemented with creatine during RT. However, whilst the results of this study are often promoted as evidence that creatine has ergogenic value for this cohort, the standardised mean differences reported for muscle strength were trivial based on the effect sizes proposed by Rhea (2004) to delineate what is, and what is not meaningful following RT. If we apply more traditional effect sizes (Sullivan and Feinn, 2012), these strength improvements still remain small. One of the longest trials to investigate the impact of creatine supplementation and RT in middle-aged and older male adults (49-69 years old) found no additional benefits on measures of bone, muscle or strength after 12 months (Candow et al., 2020). Moreover, Beaudart et al., (2018) concluded that the research findings were equivocal for creatine after conducting a systematic review into the effects of various nutrients on muscle mass, muscle strength and physical performance in older adults (≥60 years old).


Scale for determining the magnitude of effects sizes in strength training research
Taken from Rhea (2004)


At the time of writing only a handful of studies have assessed the monotherapy supplementation of creatine in older adults (≥60 years) undergoing RT (Smolarek et al., 2020; Gualano et al., 2014; Deacon et al., 2008; Pinto et al 2016; Aguiar et al., 2013; Alves et al., 2013; Brose et al 2003; Chrusch et al., 2001; Bermon et al., 1998). Of those that measured changes in lean tissue mass, participants supplemented with creatine consistently achieved greater benefits compared to placebo (Gualano et al., 2014; Pinto et al 2016; Aguiar et al., 2013; Brose et al 2003; Chrusch et al., 2001). In contrast, the effects of creatine on muscle strength were less consistent with the vast majority of studies showing no additional benefit versus placebo for core RT lower limb exercises i.e. leg press (Deacon et al., 2008; Pinto et al., 2016; Alves et al., 2013; Brose et al 2003; Bermon et al., 1998). Three of the four studies that explored the impact of creatine on physical function found no evidence of performance enhancement compared to placebo for a number of standard tests (Aguiar et al., 2013; Brose et al 2003; Gualano et al. 2014; Deacon et al., 2008); these included the 30-second chair stand test, 30 metre walk time, time to climb 14 stairs, the timed-up-and-go test, and the shuttle walk distance test. No RCTs have yet tested whether creatine supplementation in older adults (≥60 years) positively impacts balance or quality of life. Encouragingly though, Neves et al., (2011) demonstrated improved quality of life and physical function in postmenopausal women (mean age=58 years old) with knee osteoarthritis that took creatine during RT. The only study to have assessed the effect of creatine on dynamic balance found that improvement of balance performance was actually inhibited in older middle-aged adults (Johannsmeyer et al., 2016); those that were randomly allocated to the placebo group during drop-set RT experienced significantly greater improvement in dynamic balance (30.8%) compared to the creatine group (19.4%), with a reduction in balance errors detected for the placebo group only.  In sum, creatine supplementation in older adults during RT appears to support increased lean tissue mass, but this has not necessarily translated into appreciable gains in muscle strength, physical function and/or improved balance versus placebo.

Is creatine well tolerated and safe?

Creatine when used in healthy, older adults appears to be well tolerated and safe. There have been no reports or evidence of any adverse effects that are serious in nature (Chilibeck et al., 2017; Goudarzian et al., 2017; Pinto et al., 2016; Gualano et al., 2014; Alves et al., 2013; Brose et al 2003; Chrusch et al., 2001; Bermon et al., 1998) and self-reported issues associated with the use of creatine have been uncommon (Pinto et al 2016; Gualano et al., 2014; Alves et al., 2013; Brose et al., 2003). No adverse events related to, nor changes in either kidney or liver function have been reported from RCTs (Gualano et al., 2014; Tarnopolsky et al., 2007; Brose et al., 2003) and other studies that included both middle-aged and older adults are devoid of any such side-effects (Johannsmeyer et al., 2016; Chilibeck et al., 2015; Lobo et al., 2015; Cornelissen et al., 2010; Eijnde et al., 2003). Some studies have reported that gastrointestinal (GI) distress and muscle cramping and/or muscle strain may be more common in those receiving creatine (Chilibeck et al., 2015; Chrusch et al., 2001). In healthy, older men (mean age=70 years old) loose stools were reported by Chrusch et al., (2001) as a side-effect during the 1-week loading phase and increased muscle cramping/strain occurred between weeks 3 and 5. Middle-aged to older postmenopausal women (mean age=57 years old) taking creatine experienced a higher number of these adverse events when GI complaints and muscle cramping were grouped for assessment (Chilibeck et al., 2015). None of these side-effects led to study discontinuation and appear to be transient in nature with no impairment of exercise training response noted. 

What questions do we need further clarification on? 

Many questions remain unresolved. Despite the evidence supporting increased lean tissue mass following creatine supplementation, it seems too early to claim definitively that such a strategy substantially and consistently improves muscle strength or physical function in all older adults undergoing RT. Training adaptations, in theory, should be augmented by creatine. It is well acknowledged that ageing causes skeletal muscle atrophy with disproportionately greater reduction in cross-sectional area (CSA) of PCr-rich type-II muscle fibres (Nilwik et al., 2013; Kushmerick et al., 1992), and this results in much lower levels of intramuscular creatine in the quadriceps vastus lateralis (thigh) muscle of older versus younger adults (Chilibeck et al., 2017). Lifestyle changes with ageing – particularly reduced dietary meat intakes, decreased physical activity levels (Chilibeck et al., 2017) and increased sedentary time (Diaz et al., 2017; Dunlop et al., 2015) – may further impact muscle PCr levels and modify any potential benefits of creatine supplementation. Further research is therefore required to establish whether the magnitude and heterogeneity of RT adaptations is modulated by significant inter-individual differences in creatine uptake kinetics, given that training responsiveness is correlated to the change in intramuscular creatine stores. Research by Syrotuik and Bell (2004) provide support for this possibility where it was demonstrated that young, healthy men had 3 different levels of response to a 5-day creatine load as measured by post-supplementation intramuscular creatine levels. Responders to creatine loading possessed a biological profile of the lowest initial muscle Cr/PCr levels, greatest percentage of type-II muscle fibres, largest muscle fibre CSA and lean tissue mass, plus were the only subjects to achieve improvement in 1RM leg press when compared to quasi- and non-responders. It is plausible that this may partially account for the lack of consistency in the research as such inter-individual variation could significantly water down any generalised group benefits. These responder profiles outlined above also raise another potential limitation in those older adults that are most in need of an ergogenic effect (i.e. those with sarcopenia and muscle weakness), as they may be the least likely, by extension, to reap the meaningful benefits of creatine supplementation. Furthermore, it is well accepted that intramuscular post-supplementation creatine levels (at day 28) are comparable for “slow” (3 grams/day for 1 month) and “rapid” load (4×5 grams/day for 5-7 days and 3-5 grams/day thereafter) protocols (Hultman et al., 1996). Thus, it would be prudent to compare whether the slow load approach is better tolerated than the rapid load approach (i.e. reduction of GI-related side-effects and muscle cramping/pulls) based on the evidence where some older adults appear to be more sensitive to large initiation doses of creatine.


Individual values for muscle creatine monohydrate
Taken from Syrotuik & Bell (2004)


Final comments

It is worth mentioning that besides any possible beneficial effect of creatine on lean tissue mass, skeletal muscle strength or function, there are several other therapeutic reasons that may potentially justify such use in older adults. An increasing amount of data from both human and rodent experiments support multiple other benefits for creatine, including lowering cholesterol and triglyceride levels, reducing liver fat accumulation, decreasing homocysteine levels, having antioxidant properties, improving glycaemic control, slowing tumor growth in some types of cancers, mitigating bone loss, positively affecting cognitive function and in some cases, serving as an antidepressant (Kreider et al., 2017). Consequently, the position stand on the safety and efficacy of creatine supplementation in exercise, sport, and medicine published by the International Society of Sports Nutrition concluded that (2017:11): 

Available short and long-term studies in healthy and diseased populations, from infants to the elderly, at dosages ranging from 0.3 to 0.8 g/kg/day for up to 5 years have consistently shown that creatine supplementation poses no adverse health risks and may provide a number of health and performance benefits.


References

Aguiar AF, Januário RS, Junior RP, Gerage AM, Pina FL, Do Nascimento MA, Padovani CR, Cyrino ES. Long-term creatine supplementation improves muscular performance during resistance training in older women. European journal of applied physiology. 2013 Apr 1;113(4):987-96.

Alves CR, Merege Filho CA, Benatti FB, Brucki S, Pereira RM, de Sá Pinto AL, Lima FR, Roschel H, Gualano B. Creatine supplementation associated or not with strength training upon emotional and cognitive measures in older women: a randomized double-blind study. PLoS One. 2013 Oct 3;8(10):e76301.

Anderson O. (1993) Creatine propels British athletes to Olympic gold medals: Is creatine the one true ergogenic aid? Running Research News 9, 1-5

Beaudart C, Rabenda V, Simmons M, Geerinck A, Araujo DC, Reginster JY, Amuthavalli TJ, Bruyère O. Effects of Protein, Essential Amino Acids, B-Hydroxy B-Methylbutyrate, Creatine, Dehydroepiandrosterone and Fatty Acid Supplementation on Muscle Mass, Muscle Strength and Physical Performance in Older People Aged 60 Years and Over. A Systematic Review on the Literature. The journal of nutrition, health & aging. 2018;22(1):117.

Bermon S, Venembre P, Sachet C, Valour S, Dolisi C. Effects of creatine monohydrate ingestion in sedentary and weight-trained older adults. Acta Physiologica Scandinavica. 1998 Oct 1;164:147-56.

Bird SP. Creatine Supplementation and Exercise Performance: A Brief Review. Journal of Sports Science & Medicine. 2003;2(4):123-132.

Brose A, Parise G, Tarnopolsky MA. Creatine supplementation enhances isometric strength and body composition improvements following strength exercise training in older adults. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2003 Jan 1;58(1):B11-9.

Buford TW, Kreider RB, Stout JR, Greenwood M, Campbell B, Spano M, Ziegenfuss T, Lopez H, Landis J, Antonio J. International Society of Sports Nutrition position stand: creatine supplementation and exercise. Journal of the International Society of Sports Nutrition. 2007 Aug 30;4(1):6.

Candow et al. Effect of 12 months of creatine supplementation and whole-body resistance training on measures of bone, muscle and strength in older males. Nutr Health. 2020, Nov 24 (online ahead of print)

Candow DG, Chilibeck PD, Forbes SC. Creatine supplementation and aging musculoskeletal health. Endocrine. 2014 Apr 1;45(3):354-61.

Candow DG, Chilibeck PD. Potential of creatine supplementation for improving aging bone health. The journal of nutrition, health & aging. 2010 Feb 1;14(2):149-53.

Candow DG, Zello GA, Ling B, Farthing JP, Chilibeck PD, McLeod K, Harris J, Johnson S. Comparison of creatine supplementation before versus after supervised resistance training in healthy older adults. Research in Sports Medicine. 2014 Jan 2;22(1):61-74.

Chilibeck PD, Candow DG, Landeryou T, Kaviani M, Paus-Jenssen L. Effects of creatine and resistance training on bone health in postmenopausal women. Medicine & Science in Sports & Exercise. 2015 Aug 1;47(8):1587-95.

Chilibeck PD, Kaviani M, Candow D, Zello, G. Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: a meta-analysis. Open Access Journal of Sports Medicine 2017 Nov 2; 8: 213-226.

Chrusch MJ, Chilibeck PD, Chad KE, Davison KS, Burke DG. Creatine supplementation combined with resistance training in older men. Medicine & Science in Sports & Exercise. 2001 Dec 1;33(12):2111-7.

Close GL, Hamilton DL, Philp A, Burke LM, Morton JP. New strategies in sport nutrition to increase exercise performance. Free Radical Biology and Medicine. 2016 Sep 30;98:144-58.

Cornelissen VA, Defoor JG, Stevens A, Schepers D, Hespel P, Decramer M, Mortelmans L, Dobbels F, Vanhaecke J, Fagard RH, Vanhees L. Effect of creatine supplementation as a potential adjuvant therapy to exercise training in cardiac patients: a randomized controlled trial. Clinical rehabilitation. 2010 Nov;24(11):988-99.

Deane CS, Wilkinson DJ, Phillips BE, Smith K, Etheridge T, Atherton PJ. “Nutraceuticals” in relation to human skeletal muscle and exercise. American Journal of Physiology-Endocrinology and Metabolism. 2017 Apr 1;312(4):E282-99.

Devries MC, Phillips SM. Creatine supplementation during resistance training in older adults-a meta-analysis. Med Sci Sports Exerc. 2014;46(6):1194–203

Diaz KM, Howard VJ, Hutto B, Colabianchi N, Vena JE, Safford MM, Blair SN, Hooker SP. Patterns of sedentary behavior and mortality in US Middle-aged and older adults: a national cohort study. Annals of internal medicine. 2017 Oct 3;167(7):465-75.

Dunlop DD, Song J, Arnston EK, Semanik PA, Lee J, Chang RW, Hootman JM. Sedentary time in US older adults associated with disability in activities of daily living independent of physical activity. Journal of physical activity & health. 2015 Jan;12(1):93.

Eijnde BO, Van Leemputte M, Goris M, Labarque V, Taes Y, Verbessem P, Vanhees L, Ramaekers M, Eynde BV, Van Schuylenbergh R, Dom R. Effects of creatine supplementation and exercise training on fitness in men 55–75 yr old. Journal of Applied Physiology. 2003 Aug 1;95(2):818-28.

Figueiredo VC, de Salles BF, Trajano GS. Volume for Muscle Hypertrophy and Health Outcomes: The Most Effective Variable in Resistance Training. Sports Medicine. 2017 Oct 11:1-7.

Goudarzian M, Rahimi M, Karimi N, Samadi A, Ajudani R, Sahaf R, Ghavi S. Mobility, Balance, and Muscle Strength Adaptations to Short-Term Whole Body Vibration Training Plus Oral Creatine Supplementation in Elderly Women. Asian Journal of Sports Medicine. 2017 Mar 1;8(1).

Gualano B, Macedo AR, Alves CR, Roschel H, Benatti FB, Takayama L, de Sá Pinto AL, Lima FR, Pereira RM. Creatine supplementation and resistance training in vulnerable older women: a randomized double-blind placebo-controlled clinical trial. Experimental gerontology. 2014 May 31;53:7-15. 

Gualano B, Rawson ES, Candow DG, Chilibeck PD. Creatine supplementation in the aging population: effects on skeletal muscle, bone and brain. Amino acids. 2016 Aug 1;48(8):1793-805.

Hultman E, Soderlund K, Timmons JA, Cederblad G, Greenhaff PL. Muscle creatine loading in men. Journal of applied physiology. 1996 Jul 1;81(1):232-7

Johannsmeyer S, Candow DG, Brahms CM, Michel D, Zello GA. Effect of creatine supplementation and drop-set resistance training in untrained aging adults. Experimental gerontology. 2016 Oct 31;83:112-9.

Kreider RB, Kalman DS, Antonio J, Ziegenfuss TN, Wildman R, Collins R, Candow DG, Kleiner SM, Almada AL, Lopez HL. International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. Journal of the International Society of Sports Nutrition. 2017 Jun 13;14(1):18.

Kuriansky J, Gurland B. The performance test of activities of daily living. The International Journal of Aging & Human Development.1976; 7:343-352.

Kushmerick MJ, Moerland TS, Wiseman RW. Mammalian skeletal muscle fibers distinguished by contents of phosphocreatine, ATP, and Pi. Proceedings of the National Academy of Sciences. 1992 Aug 15;89(16):7521-5

Lobo DM, Tritto AC, da Silva LR, de Oliveira PB, Benatti FB, Roschel H, Nieß B, Gualano B, Pereira RM. Effects of long-term low-dose dietary creatine supplementation in older women. Experimental gerontology. 2015 Oct 31;70:97-104.

Neves Jr M, Gualano B, Roschel H, Fuller R, Benatti FB, Pinto AL, Lima FR, Pereira RM, Lancha Jr AH, Bonfa E. Beneficial effect of creatine supplementation in knee osteoarthritis. Medicine and science in sports and exercise. 2011 Aug;43(8):1538-43.

Nilwik R, Snijders T, Leenders M, Groen BB, van Kranenburg J, Verdijk LB, van Loon LJ. The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Experimental gerontology. 2013 May 31;48(5):492-8.

Phillips SM. Nutritional supplements in support of resistance exercise to counter age-related sarcopenia. Advances in Nutrition: An International Review Journal. 2015 Jul 1;6(4):452-60.

Pinto CL, Botelho PB, Carneiro JA, Mota JF. Impact of creatine supplementation in combination with resistance training on lean mass in the elderly. Journal of cachexia, sarcopenia and muscle. 2016 Sep 1;7(4):413-21.

Ralston GW, Kilgore L, Wyatt FB, Baker JS. The Effect of Weekly Set Volume on Strength Gain: A Meta-Analysis. Sports Medicine. 2017 Jul 28:1-7.

Rhea MR. Determining the magnitude of treatment effects in strength training research through the use of the effect size. Journal of strength and conditioning research. 2004 Nov 1;18:918-20.

Schoenfeld BJ, Ogborn D, Krieger JW. Dose-response relationship between weekly resistance training volume and increases in muscle mass: A systematic review and meta-analysis. Journal of sports sciences. 2017a Jun 3;35(11):1073-82.

Schoenfeld BJ, Ogborn D, Krieger JW. The dose–response relationship between resistance training volume and muscle hypertrophy: are there really still any doubts?. Journal of sports sciences. 2017b Oct 18;35(20):1985-7.

Sullivan, Gail M., and Richard Feinn. “Using effect size—or why the P value is not enough.” Journal of graduate medical education 4, no. 3 2012: 279-282.

Syrotuik DG, Bell GJ. Acute creatine monohydrate supplementation: A descriptive physiological profile of responders vs. nonresponders. The Journal of Strength & Conditioning Research. 2004 Aug 1;18(3):610-7.

Tarnopolsky M, Zimmer A, Paikin J, et al., Creatine monohydrate and conjugated linoleic acid improve strength and body composition following resistance exercise in older adults. PLoS One. 2007;2(10):e991.


For local Townsville residents interested in FitGreyStrong’s Exercise Physiology services or exercise programs designed to improve muscular strength, physical function (how you move around during the day) and quality of life or programs to enhance athletic performance, contact FitGreyStrong@outlook.com or phone 0499 846 955 for a confidential discussion.

For other Australian residents or oversees readers interested in our services, please see here.


Disclaimer: All contents of the FitGreyStrong website/blog are provided for information and education purposes only. Those interested in making changes to their exercise, lifestyle, dietary, supplement or medication regimens should consult a relevantly qualified and competent health care professional. Those who decide to apply or implement any of the information, advice, and/or recommendations on this website do so knowingly and at their own risk. The owner and any contributors to this site accept no responsibility or liability whatsoever for any harm caused, real or imagined, from the use or distribution of information found at FitGreyStrong. Please leave this site immediately if you, the reader, find any of these conditions not acceptable.

© FitGreyStrong


 

Share this:

A brief analysis of the differences between the Sumo and conventional Deadlift

Share this:

The Sumo deadlift (sagittal-frontal planes) is a popular resistance training exercise for strength athletes, powerlifters and experienced gym enthusiasts, but it is not an exercise that you see utilised all that much by older adults or in rehab programs. Interestingly, there is very little research that has explored the benefits of the Sumo deadlift or compared it to the conventional deadlift (sagittal plane) which is now more commonly used across different athletic, rehab and clinical settings.

The Sumo Deadlift

However, based on the limited research that has been published, the Sumo deadlift appears to be an excellent exercise to simultaneously improve muscle strength in many major muscle groups. When Escamilla et al (2002) compared the Sumo and conventional deadlifts, results showed that electromyographic (EMG) activity (when expressed as a percentage of maximum voluntary isometric contraction) was not significantly different for rectus femoris, lateral hamstring (biceps femoris), medial hamstrings (semitendinosus/semimembranosus), lateral gastrocnemius, hip adductors (adductor longus, adductor magnus, and gracilis), gluteus maximus, L3 paraspinals, T12 paraspinals, middle trapezius, upper trapezius, rectus abdominis and external obliques. Modest but significantly higher muscle activity was reported for the Sumo versus conventional DL for vastus lateralis (48 vs 40), vastus medialis (44 vs 36) and tibialis anterior (18 vs 13). This is interesting as it suggests that when these exercises are performed at moderate submaximal loads, posterior chain muscle activity is no different for both exercises, but there is relatively greater quadriceps muscle activity generated for the Sumo. That being said, load may alter this with Campitelli et al 2018 showing that as load increases for the Sumo DL, greater ankle and knee angles and a more inclined/flexed trunk angle manifested but once load increases such that maximum intensity (100% 1RM) and effort is required, significantly greater joint moment and L4–L5 shear forces were observed for the conventional DL versus Sumo DL (Cholewicki et al 1991).

Whilst I don’t think that this is going to mean too much for athletes [i.e., Sumo or conventional will do the trick], it does provide some choice, with the decision to pick one exercise over the other perhaps more based on preference and comfort than any major differences in training outcomes. In contrast, for rehab purposes, as paraspinal muscle activity was found to be no different for both lifts at submaximal loads, even though there is less hip flexion [i.e., less inclined/flexed trunk angle for the Sumo], the Sumo may provide people that experience CLBP (back pain) and clinicians alike an opportunity to utilise an exercise (at least initially) that may help circumvent the moderate-to-severe fear and anxiety that some have when contemplating or actually bending over or forward (hip and vertebral flexion). This potentially helps or allows 3 key things to be accomplished in a rehab setting: (1) strength improvements in important, large muscle groups; (2) physical conditioning that will facilitate bridging across to other movements that involve greater hip and vertebral flexion, and perhaps most importantly; (3) room to work on and concomitantly address multiple other psychosocial and attitudinal influences that impact a person’s lived experience of back pain.


Anterio-lateral view of Sumo Deadlift

For local Townsville residents interested in FitGreyStrong’s Exercise Physiology services or exercise programs designed to improve health, physical function and quality of life or to enhance athletic performance, contact FitGreyStrong@outlook.com or phone 0499 846 955 for a confidential discussion.

For other Australian residents or oversees readers interested in our services, please see here.


Disclaimer: All contents of the FitGreyStrong website/blog are provided for information and education purposes only. Those interested in making changes to their exercise, lifestyle, dietary, supplement or medication regimens should consult a relevantly qualified and competent health care professional. Those who decide to apply or implement any of the information, advice, and/or recommendations on this website do so knowingly and at their own risk. The owner and any contributors to this site accept no responsibility or liability whatsoever for any harm caused, real or imagined, from the use or distribution of information found at FitGreyStrong. Please leave this site immediately if you, the reader, find any of these conditions not acceptable.
© FitGreyStrong
Share this:

Muscle strength gains during resistance exercise training are attenuated with soy compared with dairy or usual protein intake in older adults – part 1

Share this:

On a global scale, the number of people over 60 yr is expected to more than double from 841 million in 2012 to more than 2 billion by 2050. This change in demographics will have profound implications for many aspects of life (Thomson et al. 2016). Furthermore, Government bodies worldwide will be faced with considerable challenges related to ageing policy and how best to deal with this new reality.

ageing, loss of muscle mass, strength, sarcopenia
Courtesy @LeighBreen PhD (Twitter): Sarcopenia presentation


Of the many things that occur during the ageing process one of the most obvious signs is the loss of skeletal muscle mass and strength, with decrements in physical function and potential predisposition to disability. In academic speak, this is known as sarcopenia. The research and interest in this area has been gradually increasing as evidenced by the below graph that shows – since the term sacropenia was first coined in 1989 – a massive increase has occurred. To enhance functional physical capacity and reduce disability into older age, it is therefore critical to develop strategies that facilitate the attenuation of skeletal muscle mass and strength. With more than 30 years of scientific evidence to show that exercise – and, more specifically, resistance training – as both very effective and safe methods to maintain skeletal lean muscle tissue mass and strength (see here and here), current recommendations strongly advocate this form of exercise for older adults.

Interestingly, gains in skeletal lean muscle tissue and muscular strength may be potentiated through the application of appropriate nutritional strategies and in particular increased protein intake. A recent meta-analysis by Cermak and colleagues (2012) reported ~35% greater enhancement in muscle mass and strength can be achieved in older adults undertaking resistance training who consumed at least 1.2 g/kg of body weight/d of protein through supplementation or diet compared with other control groups that were either non-protein, lower protein diet or exercise training with no nutrition co-intervention. Thus, protein quality or source may further augment the effect of the resistance training stimulus by eliciting a greater stimulatory effect on muscle protein synthesis. Dairy protein compared to soy protein has been shown to be more effacacious post-exercise in stimulating increases in lean mass in young healthy males. In older adults though this response to resistance training and increased protein intake may be blunted which necessitates that higher doses of protein are required to bring about an increase.

The aim of the study under review for this article was to determine whether increased dairy or soy protein intake combined with resistance training improved strength gains in older adults.

Soy protein, strength, muscle mass, testosterone
Does Soy Protein Suppress Strength Gains?


Researchers recruited one hundred and ninety two older adults (age, 50-79 yr; BMI, 20-35 kg/m²) by public advertisement. Participation was allowed if they were physically active but not engaged in formal exercise. Those that meet the inclusion criteria undertook a resistance training program for 12 weeks. Randomisation to one of three experimental diets was performed:

  1. High dairy protein diet (HP-D)
  2. High non-dairy (soy) protein diet (HPeS)
  3. Usual protein diet (UP).

DIET: Each diet was isocaloric and low-fat (30% fat, <8% saturated fat) and aimed to maintain energy balance. The diets provided ~1 g/kg of body weight/d of dietary protein, mainly from lean meat sources. HP-D including additional dairy protein of ~27 g per day in the form of a shake (475 g Devondale Smart reduced fat milk, 200 g Nestle Soleil diet no fat yoghurt & 20 ml Bickfords vanilla milk mix syrup). The HP-S providing in the form of a shake – 300 g So Good reduced fat soy milk, 100 g Kingland soy yoghurt, 20 g Nature’s Way instant natural protein powder & 15 g poly-joule – which added an extra ~27 g of soy protein. Protein intake was distribtuted evenly across the day with the three main meals providing >20 g per feed; this is consistent with best practice for optimising muscle protein synthesis in older adults. Following resistance training sessions participants consumed the appropriate additional foods immediately after training and that represented the main meal of that day. Participants were supplied with key foods specific to their allocated diet for the duration of the study to facilitate adherence. Energy and macronutrient intakes from daily food checklists were analysed to monitor food intake and dietary compliance.

Strength training and ageing
Resistance training: a key component of healthy ageing?


RESISTANCE TRAINING: All subjects participated in a whole body resistance training program three days per week on non-consecutive days for 12 weeks and the principles of progressive overload were applied.  Five exercises on weight stack pin loaded machines were performed: leg press, chest press, knee extension, lat pull down and leg curl, and seated bent knee hip flexions. Trainees started with one set x 8 repetition maximum (RM; maximum weight lifted for eight repetitions), this was maintained until individuals could perform three sets of 12 repetitions and then the load was increased. This cycle was repeated again for the duration of the trial. Assessment of muscle strength, body composition, physical function and quality of life was conducted at baseline and 12 weeks. All exercise training was completed in the research gymnasium at the University of South Australia under the supervision of gymnasium staff.

Assessment of muscle strength using handgrip, isokinetic dynamometry and 8RM was completed. The leg press, chest press, knee extension, lat pull down and leg curl were tested with 8RM and a summed total 8RM for all exercises was recorded  Dominant handgrip strength was measured using hydraulic handgrip dynamometer and isometric strength of the knee extensor muscles of the right leg was assessed using an isokinetic dynamometer.

resistance training slows down aging
You don’t have to lift weights to do resistance training


RESULTS: 83 participants completed the intervention being adherent to both diet and resistance training protocols. HP-D and HP-S had higher protein intakes compared with UP (HP-D 1.41 ± 0.14 g/kg/d, HP-S 1.42 ± 0.61 g/kg/d, UP 1.10 ± 0.10 g/kg/d; P < 0.001 treatment effect). Baseline characteristics, compliance with the intakes of the additional protein foods and adherence to the resistance training program in those that meet all relevant study protocols was not different between groups.

Increase in muscular strength as ascertained by total 8RM was significantly less in HP-S compared with HP-D and UP (HP-D 92.1 ± 40.8%, HP-S 63.0 ± 23.8%,UP 92.3 ± 35.4%; P=0.002 treatment effect). 8RM percent improvement in leg press was much greater in HP-D and UP compared with HP-S (HP-D, 136.8 ± 88.2%; HP-S, 64.8 ± 35.2%; UP, 135.0 ± 62.0%; P < 0.001). For most other exercises, 8RM was not signficantly different for each diet group. Total training volume over the 12 weeks was not different between groups.

Weight, waist circumference and total body fat decreased and lean mass and the distance covered during the 6 min walk test increased significantly increased with no difference between diets. As expected absolute protein intake (g) and relative protein intake (per kg body weight) were different with HP-D and HP-S greater than UP. Dairy protein in HP-D was significantly greater compared with both HP-S and UP with the amount of non-dairy protein in HP-S significantly greater compared with both HP-D and UP.

DISCUSSION: This study has demonstrated that 12 weeks of progressive resistance training exercise in healthy older adults did not provide any additional benefit for improvements in strength, body composition, physical function, or quality of life when additional protein from either dairy or soy is compared to usual (lower) protein intake. Perhaps of more significant interest is that results suggested that increased soy protein intake attenuated improvements in muscular strength. I am going to publish this article before it is entirely finished as I believe this is important research for those interested in this area and facilitating discussion on this topic should start now.

image
Stay strong and prosper


Over the next week or so I will be posting a part 2 in relation to this study as there is a lot more to explore. For example, why did the authors fail to acknowledge or discuss the fact that the attentuated strength improvement in the HP-S was confined exclusively to the leg press exercise? For all other exercises, no difference for dietary influence on strength improvement was found. Whilst not a criticism, it seems rather odd that whey protein was not included as one of the intervention dietary arms of the study. The evidence for whey protein augmenting the development of strength and facilitating the accretion of lean muscle mass from resistance training is well documented. Comparing this with the other diets would have provided some interesting insights into whether there are any further benefits of whey protein to older adults. Finally, one thing that does disappoint me about many of the studies that investigate the efficacy and safety of resistance training in older adults is the reliance on exercises that are machine-based.

CONCLUSION: Increased soy protein intake attenuated gains in muscle strength during resistance training in older adults compared with increased intake of dairy protein or usual protein intake.

Look out for part 2 (see here) titled “Does Soy Protein Really Inhibit Resistance Training Induced Strength Gains In Older Adults?” where I will discuss some of the things I mentioned above in more depth and some possible mechanisms of action as to why soy protein may or may not suppress strength gains from resistance training.

Post-script: Following further analysis and publication of part 2 of this blog, I wrote a letter to the Editor of Clinical Nutrition Journal outlining some of the, what I believed, flaws regarding the interpretation of the results of this trial. Upon peer review this was accepted for publication and can be found here. If you are unable to access this correspondence and the authors reply to my letter, please contact me and I should be able to assist. 

References

Cermak et al. (2012) Protein supplementaiton augments the adaptrive response of skeletal muscle to resistance-type exercise training: a meta-analysis Am J Clin Nutr 96: 1454- 64.

Thomson et al. (2016) Muscle strength gains during resistance exercise training are attenuated with soy compared with dairy or usual protein intake in older adults: A randomized controlled trial. Clinical Nutrition. 35: 27-33

Wilson, SA (2016) Comment on: Muscle strength gains during resistance exercise training are attenuated with soy compared with dairy or usual protein intake in older adults: A randomized controlled trial. Clinical Nutrition. 35(6):1575-1576


Disclaimer: All contents of the FitGreyStrong website/blog are provided for information and education purposes only. Those interested in making changes to their exercise, lifestyle, dietary, supplement or medication regimens should consult a relevantly qualified and competent health care professional. Those who decide to apply or implement any of the information, advice, and/or recommendations on this website do so knowingly and at their own risk. The owner and any contributors to this site accept no responsibility or liability whatsoever for any harm caused, real or imagined, from the use or distribution of information found at FitGreyStrong. Please leave this site immediately if you, the reader, find any of these conditions not acceptable.

© FitGreyStrong


Share this: